Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процесс численного решения





Когда математическая модель уже построена, обычно появляется мысль о том, нельзя ли найти решение в явной форме. Однако такое решение обычно возможно только при радикальном упрощении задачи. Убедившись в невозможности построения явного решения, мы обращаемся к разработке численного метода для его нахождения. При выборе численного метода решения приходится учитывать свойства вычислительных средств и программного обеспечения, которые имеются в нашем распоряжении.

Наиболее важным фактором в численном решении задачи является то, что компьютеры имеют дело с конечным числом цифр и символов. Ошибка, обусловленная ограниченной длиной слов вычислительной машины, называется ошибкой округления. К счастью, большинство современных ЭВМ имеют эффективную арифметику двойной точности. На некоторых машинах арифметика двойной точности реализована с помощью программного обеспечения, что в несколько раз увеличивает время счета по сравнению с вариантом одинарной точности.

Другое обстоятельство, которое приводит к погрешности численного решения, связано с необходимостью замены непрерывных задач дискретными задачами. Например, при вычислении интеграла на ЭВМ используются значения подынтегральной функции только в конечном числе точек. Следовательно, даже если арифметические операции будут выполняться точно, без каких-либо округлений, все равно будет существовать ошибка, обусловленная дискретной аппроксимацией интеграла.

Ошибки такого типа называют ошибками дискретизации. Эти ошибки, за исключением тривиальных случаев, всегда возникают при численном решении дифференциальных уравнений и других непрерывных задач. В основе многих численных методов лежит идея итерационного процесса. В ходе такого процесса строится последовательность приближений к решению в надежде, что эти приближения сойдутся к решению. Однако на ЭВМ можно реализовать только конечное число таких приближений, поэтому мы вынуждены останавливать решение, не достигнув математической сходимости. Ошибку, вызванную таким конечным завершением итерационного процесса, называют ошибкой сходимости.

Другим важнейшим фактором, помимо точности, рассматриваемым при разработке методов решения математических моделей на ЭВМ, является эффективность. Под этим мы понимаем количество времени, которое необходимо затратить для решения данной задачи на ЭВМ.

Остановимся на методах решения задачи Коши [4], [9], [10]:

1) Одношаговые методы, в которых для нахождения следующей точки на кривой y = f (x) требуется информация лишь об одном предыдущем шаге. Одношаговыми являются:

- метод Эйлера;

- методы Рунге-Кутта.

2) Методы прогноза и коррекции (многошаговые), в которых для отыскания следующей точки кривой y = f (x) требуется информация более чем об одной из предыдущих точек. Чтобы получить достаточно точное численное значение, часто прибегают к итерации.

К числу таких методов относятся методы:

- Милна;

- Адамса-Башфорта;

- Хемминга и др.







Дата добавления: 2015-04-16; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия