Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процесс численного решения





Когда математическая модель уже построена, обычно появляется мысль о том, нельзя ли найти решение в явной форме. Однако такое решение обычно возможно только при радикальном упрощении задачи. Убедившись в невозможности построения явного решения, мы обращаемся к разработке численного метода для его нахождения. При выборе численного метода решения приходится учитывать свойства вычислительных средств и программного обеспечения, которые имеются в нашем распоряжении.

Наиболее важным фактором в численном решении задачи является то, что компьютеры имеют дело с конечным числом цифр и символов. Ошибка, обусловленная ограниченной длиной слов вычислительной машины, называется ошибкой округления. К счастью, большинство современных ЭВМ имеют эффективную арифметику двойной точности. На некоторых машинах арифметика двойной точности реализована с помощью программного обеспечения, что в несколько раз увеличивает время счета по сравнению с вариантом одинарной точности.

Другое обстоятельство, которое приводит к погрешности численного решения, связано с необходимостью замены непрерывных задач дискретными задачами. Например, при вычислении интеграла на ЭВМ используются значения подынтегральной функции только в конечном числе точек. Следовательно, даже если арифметические операции будут выполняться точно, без каких-либо округлений, все равно будет существовать ошибка, обусловленная дискретной аппроксимацией интеграла.

Ошибки такого типа называют ошибками дискретизации. Эти ошибки, за исключением тривиальных случаев, всегда возникают при численном решении дифференциальных уравнений и других непрерывных задач. В основе многих численных методов лежит идея итерационного процесса. В ходе такого процесса строится последовательность приближений к решению в надежде, что эти приближения сойдутся к решению. Однако на ЭВМ можно реализовать только конечное число таких приближений, поэтому мы вынуждены останавливать решение, не достигнув математической сходимости. Ошибку, вызванную таким конечным завершением итерационного процесса, называют ошибкой сходимости.

Другим важнейшим фактором, помимо точности, рассматриваемым при разработке методов решения математических моделей на ЭВМ, является эффективность. Под этим мы понимаем количество времени, которое необходимо затратить для решения данной задачи на ЭВМ.

Остановимся на методах решения задачи Коши [4], [9], [10]:

1) Одношаговые методы, в которых для нахождения следующей точки на кривой y = f (x) требуется информация лишь об одном предыдущем шаге. Одношаговыми являются:

- метод Эйлера;

- методы Рунге-Кутта.

2) Методы прогноза и коррекции (многошаговые), в которых для отыскания следующей точки кривой y = f (x) требуется информация более чем об одной из предыдущих точек. Чтобы получить достаточно точное численное значение, часто прибегают к итерации.

К числу таких методов относятся методы:

- Милна;

- Адамса-Башфорта;

- Хемминга и др.







Дата добавления: 2015-04-16; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия