Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Эйлера





Это простейший метод решения задачи Коши, позволяющий интегрировать дифференциальные уравнения первого порядка. Его точность невелика, но в некоторых случаях, например, в системах управления электроприводов, он применяется достаточно часто. На основе этого метода легче понять алгоритмы других, более эффективных методов.

Рассмотрим снова дифференциальное уравнение в форме Коши

y’ = f (t, y), (3.9)

удовлетворяющее начальному условию

y (t 0) = y 0. (3.10)

Численное решение задачи состоит в построении таблицы приближенных значений y 1, y 2, …., yn решения уравнения (3.9) в точках t 1, t 2, …., tn. Точки t 1, t 2, …., tn - узлы сетки. Используем систему равноотстоящих узлов. Величина h - шаг сетки (шаг интегрирования).

Метод Эйлера основан на разложении y в ряд Тейлора в окрестности t 0:

Если h мало, то члены, содержащие h во второй или более высоких степенях, являются малыми более высоких порядков и ими можно пренебречь. Тогда

y' (t 0) находим из дифференциального уравнения (3.9), подставив в него начальное условие (3.10). Таким образом можно получить приближенное значение зависимой переменной при малом смещении h от начальной точки. Этот процесс можно продолжить, используя соотношение

и делая сколь угодно много шагов.

Геометрический смысл метода Эйлера заключается в аппроксимации решения на отрезке [ tn, tn +1] отрезком касательной, проведенной к графику решения в точке tn (рис. 3.3). Как видно из рис. 3.3, на каждом новом шаге приближенное решение переходит на другой член семейства решений. В результате накапливается ошибка дискретизации, которая линейно зависит от h, так как члены ряда Тейлора, содержащие h во второй и более высоких степенях, отбрасываются. Поэтому метод Эйлера имеет первый порядок точности.

Рис. 3.3 Геометрическая интерпретация метода Эйлера

Практическим следствием этого факта является ожидание того, что при уме-ньшении h приближенное решение будет все более точным и при стремлении h к нулю будет сходиться к точному решению с линейной скоростью по h; т.е. мы ожидаем, что при уменьшении шага h вдвое ошибка уменьшится в 2 раза. Очень медленная сходимость при уменьшении h характерна для методов первого порядка и служит препятствием для их широкого использования.







Дата добавления: 2015-04-16; просмотров: 1683. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия