Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы прогноза и коррекции





Методы Адамса – Башфорта используют уже сосчитанное значение в точке n, t и в предыдущих точках. В принципе, при построении интерполяционного полинома мы можем использовать и точки tn+ 1, tn+ 2 и т.д. Простейший случай при этом состоит в использовании точек tn +1, tn,…, tn - N и построении интерполяционного полинома степени N +1. При этом возникает класс методов, известный как методы Адамса - Моултона. Если N = 0, то P - линейная функция, проходящая через точки (tn, fn) и (tn+1, fn+1), и соответствующий метод

(3.18)

является методом Адамса - Моултона второго порядка.

Если, N = 2, то P - кубический полином, построенный по точкам (tn+ 1, fn+ 1), (tn, fn), (tn- 1, fn- 1) и (tn- 2, fn- 2) и соответствующий метод

(3.19)

является методом Адамса-Моултона четвёртого порядка.

Заметим, что в формулах (3.18) и (3.19) значение fn+ 1 неизвестно. Дело в том, что для вычисления f (tn+ 1, yn+ 1) =fn+ 1 нужно знать три значения yn+ 1, которое само пока является неизвестным. Например, соотношение (3.18) является уравнением

(3.20)

относительно неизвестного значения yn+ 1. То же самое справедливо и относительно (3.19). Следовательно, методы Адамса-Моултона определяют yn+ 1 неявно и в силу этого называются неявными. В то же время, методы Адамса – Башфорта называются явными, поскольку они для нахождения значения yn+ 1 не требуют решения никаких уравнений. На практике обычно не решают уравнение (3.20), а используют совместно явную и неявную формулы, что приводит к методу прогноза и коррекции. Одним из широко используемых методов прогноза и коррекции является объединение методов Адамса четвёртого порядка (3.17) и (3.19):

В целом этот метод является явным. Сначала по формуле Адамса – Башфорта вычисляется значение , являющееся «прогнозом» для . Затем используется для вычисления приближенного значения , которое, в свою очередь, используется в формуле Адамса - Моултона. Таким образом, формула Адамса -Моултона «корректирует» приближение, даваемое формулой Адамса– Башфорта.

Может возникнуть вопрос - зачем вообще нужна коррекция, если прогноз имеет четвёртый порядок точности? Ответ на этот вопрос дает оценка величины членов, выражающих погрешность. Ошибка усечения ряда для формулы прогноза (3.17) равна:

а для формулы коррекции (3.19):

т. е. погрешность усечения ряда при коррекции в 13 раз меньше.

Рис. 3.5. Алгоритм метода прогноза и коррекции

Формулы коррекции гораздо более точны, чем формулы прогноза, а потому их использование оправданно, хотя и связано с дополнительными вычислениями (рис. 3.5). Чтобы добиться наибольшей точности вычисления, коррекцию в методах прогноза и коррекции часто повторяют на одном и том же шаге несколько раз. На практике для обеспечения сходимости решения достаточно 2-3 циклов коррекции.







Дата добавления: 2015-04-16; просмотров: 1468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия