Методы прогноза и коррекции
Методы Адамса – Башфорта используют уже сосчитанное значение в точке n, t и в предыдущих точках. В принципе, при построении интерполяционного полинома мы можем использовать и точки tn+ 1, tn+ 2 и т.д. Простейший случай при этом состоит в использовании точек tn +1, tn,…, tn - N и построении интерполяционного полинома степени N +1. При этом возникает класс методов, известный как методы Адамса - Моултона. Если N = 0, то P - линейная функция, проходящая через точки (tn, fn) и (tn+1, fn+1), и соответствующий метод (3.18) является методом Адамса - Моултона второго порядка. Если, N = 2, то P - кубический полином, построенный по точкам (tn+ 1, fn+ 1), (tn, fn), (tn- 1, fn- 1) и (tn- 2, fn- 2) и соответствующий метод (3.19) является методом Адамса-Моултона четвёртого порядка. Заметим, что в формулах (3.18) и (3.19) значение fn+ 1 неизвестно. Дело в том, что для вычисления f (tn+ 1, yn+ 1) =fn+ 1 нужно знать три значения yn+ 1, которое само пока является неизвестным. Например, соотношение (3.18) является уравнением (3.20) относительно неизвестного значения yn+ 1. То же самое справедливо и относительно (3.19). Следовательно, методы Адамса-Моултона определяют yn+ 1 неявно и в силу этого называются неявными. В то же время, методы Адамса – Башфорта называются явными, поскольку они для нахождения значения yn+ 1 не требуют решения никаких уравнений. На практике обычно не решают уравнение (3.20), а используют совместно явную и неявную формулы, что приводит к методу прогноза и коррекции. Одним из широко используемых методов прогноза и коррекции является объединение методов Адамса четвёртого порядка (3.17) и (3.19): В целом этот метод является явным. Сначала по формуле Адамса – Башфорта вычисляется значение , являющееся «прогнозом» для . Затем используется для вычисления приближенного значения , которое, в свою очередь, используется в формуле Адамса - Моултона. Таким образом, формула Адамса -Моултона «корректирует» приближение, даваемое формулой Адамса– Башфорта. Может возникнуть вопрос - зачем вообще нужна коррекция, если прогноз имеет четвёртый порядок точности? Ответ на этот вопрос дает оценка величины членов, выражающих погрешность. Ошибка усечения ряда для формулы прогноза (3.17) равна: а для формулы коррекции (3.19): т. е. погрешность усечения ряда при коррекции в 13 раз меньше. Рис. 3.5. Алгоритм метода прогноза и коррекции Формулы коррекции гораздо более точны, чем формулы прогноза, а потому их использование оправданно, хотя и связано с дополнительными вычислениями (рис. 3.5). Чтобы добиться наибольшей точности вычисления, коррекцию в методах прогноза и коррекции часто повторяют на одном и том же шаге несколько раз. На практике для обеспечения сходимости решения достаточно 2-3 циклов коррекции.
|