Основы статистических испытаний сетевой модели
Рассмотренный в предыдущем разделе метод оценки надежности сетевых графиков основан на анализе критических путей. Если критический путь (пути) в ходе реализации графика не меняются, то метод считается точным. В случаях, когда критический путь может измениться, метод чаще всего дает ошибочные результаты [7]. В этом случае целесообразно оценивать надежность графиков с помощью статистического проигрыша (статистических испытаний). Метод статистических испытаний (метод Монте-Карло) представляет собой совокупность приемов и правил, позволяющих имитировать (воспроизводить) вероятностные процессы с применением при этом аппарата случайных чисел. Этот метод в настоящее время является наиболее универсальным из численных методов решения математических, инженерных, экономических и любых других задач, имеющих и вероятностный и детерминированный характер [16]. Метод основан на многократном проигрывании процессов на построенной модели с целью получения как можно большего числа значений количественных характеристик. Затем полученные значения подвергаются статистической обработке, что позволяет выявить соответствующие закономерности данного процесса в виде ряда количественных оценок. Например, многократно изменяя длительности работ сетевой модели, можно в итоге получить выборку значений длительности критического пути, на основании которой оценить вероятность выполнения проекта в заданные сроки. Решение задач методом Монте-Карло включает следующие этапы: 1) разработку и построение структурной схемы процесса (например, сетевого графика); выявление основных звеньев и связей; 2) формальное описание процесса (алгоритм расчета критического пути); 3) собственно моделирование – воспроизведение процесса в соответствии с разработанной структурной схемой и формальным описанием; 4) накопление результатов моделирования, их статистическую обработку, анализ и обобщение. Для моделирования процесса используются так называемые случайные числа с различными законами распределения. Чаще всего случайные числа – это равномерная случайная последовательность чисел в интервале 0–1. Такие последовательности случайных чисел можно получить тремя способами: – построением таблиц случайных чисел; – созданием генераторов случайных чисел; – использованием метода псевдослучайных чисел. В данном пособии используется таблица нормальных нормированных случайных отклонений [7]. С их помощью многократно изменяются продолжительности работ tij сетевой модели: tij = Тож + (13) где Тож – расчетная продолжительность работ вероятностной сетевой модели; = – среднеквадратическое отклонение от Тож; – нормированные случайные отклонения в долях (прил. 2). Изменив продолжительности работ сетевой модели, производим ее расчет с целью определения длины критического пути Ткр. Такой однократный расчет при статистических испытаниях принято называть реализацией модели. Проведя N реализаций сетевой модели, получим в итоге N значений продолжительности критического пути. При этом часть значений Ткр будет удовлетворять условию: Ткр Т д, (14) где Т д – директивный (заданный) срок выполнения комплекса работ. Вероятность выполнения этого условия р(Ткр Т д) = , (15) где N1 – число реализаций, в которых выполняется условие (14); N – общее число реализаций. При достаточно большом числе N на основе статистической обработки значений tij, , Tkp и других показателей можно с определенной степенью достоверности установить законы распределения случайных величин и осуществить имитационное моделирование производственного процесса [16].
|