Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитическое решение. Преобразуем уравнение, умножив обе его части на 2, будучи положительным числом, его можно вносить под знак модуля





Преобразуем уравнение, умножив обе его части на 2, будучи положительным числом, его можно вносить под знак модуля, поэтому получим:

 

У каждого из трехчленов положительные дискриминанты. Это дает возможность разложить каждый из них на линейные множители.

Уравнение примет вид:

На числовой прямой (см. рис. 41) отложим точки, в которых каждый из множителей обращается в нуль. В результате получим пять промежутков, на каждом из которых определим знаки трехчленов под модулем и решим полученные уравнения.

 

Рис. 41

Однако такой способ не будет рациональным. Целесообразнее изобразить промежутки знакопостоянства каждого из трехчленов на числовых осях. Тогда определение их знаков будет упрощено и сделается более наглядным (см. рис. 42).

 

Рис. 42

 

При таком схематическом изображении понятно, что:

1) при оба трехчлена положительны и уравнение примет вид:

 

Решая его, находим Оба корня не входят в промежуток и являются посторонними;

2) при первый трехчлен отрицателен, а второй положителен, получим уравнение: откуда находим корень который входит в промежуток и является решением уравнения;

3) при оба трехчлена отрицательны, получаем:

откуда который входит в промежуток и является решением уравнения;

4) при первый трехчлен положителен, второй - отрицателен, получаем уравнение:

отсюда, который входит в промежуток и является решением уравнения;

5) при оба трехчлена положительны, получается такая же ситуация, как и в первом случае. И здесь, оба корня не входят в промежуток и являются посторонними.

 

Ответ:

 


Графическое решение

 

Для графического решения преобразуем уравнение:

 

 

Построим графики функций и

 

График функции будем строить в несколько этапов:

 

а) строим график функции

 

б) строим график функции "зеркально" отразив нижнюю часть кривой в оси OX;

 

в) строим график функции для этого достаточно график функции "опустить" вниз (осуществить параллельный перенос вдоль оси OY) на

 

г) полученный график полностью симметрично отразим в оси OX, "перевернем" вокруг оси OX на 1800.

В результате получим график функции.

 

График функции построим уже известным способом:

 

строим параболу и зеркально отражаем в оси OX только часть параболы, находящуюся ниже оси OX.

 

Находим абсциссы точек пересечения графиков, которые и будут являться решениями уравнения (см. рис. 43).

 

Рис. 43

 

Абсциссы точек пересечения следующие: 1,75; 2,5 и 3,25. Они и будут решениями уравнения.

 

Ответ:

 

Пример 24. Найти все корни уравнения удовлетворяющее неравенству Решить аналитически и графически.

 

Решение







Дата добавления: 2015-04-16; просмотров: 543. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия