Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решить уравнения на множестве действительных чисел





 

Пример 17.

 

Решение

Рассмотрим коэффициент при, который равен

1. Если что происходит при и тогда квадратное уравнение " вырождается " в линейное.

При, получаем при

2. Если тогда находим дискриминант и исследуем уравнение по дискриминанту.

D = 0 при

Если то уравнение имеет единственное решение

 

 

Если тогда уравнение имеет решение

 

 

Если и тогда дискриминант будет положительным и уравнение будет иметь два различных действительных корня

 

Ответ:

1. Если a = 0, x = 0. 2. Если a = -1, x = 2. 3. Если тогда

4. Если тогда

5. Если тогда уравнение имеет два различных действительных корня

 

Пример 18.

 

Решение

 

1. Если уравнение примет вид:

В свою очередь, это уравнение при a = 0 имеет бесконечное множество решений, При - единственное решение x = a.

2. Если Найдем дискриминант:

Преобразуем уравнение к приведенному, получим:

 

Это уравнение два различных действительных корня. По теореме Виета:

 

Нетрудно найти, что эти равенства выполняются, только в одном случае, когда и

В самом деле, только при этих значениях и будет выполняться теорема Виета для уравнения:

 

При других возможных комбинациях значений и сумма и произведение их не будут равны данным значениям по теореме Виета. (Конечно, можно воспользоваться обычным способом определения корней по формуле.)

 

Ответ:

 

1. Если тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если тогда уравнение имеет единственное решение

3. Если тогда уравнение имеет два различных действительных корня:

и

 


Пример 19.

 

Решение

 

Рассмотрим случай, когда первый коэффициент равен нулю:

Это произойдет при и

1. При, уравнение примет вид: откуда

2. При уравнение примет вид: откуда

3. Если тогда, чтобы уравнение имело корни, дискриминант должен быть неотрицательным:

После преобразований, получим: при любом действительном значении a.

 

1) Если D = 0, тогда уравнение имеет единственное решение. Это произойдет при и

 

Единственный корень уравнения, при этих значениях a определяется по формуле

 

В частности, при, при, также

 

2) Если, D > 0 и уравнение имеет два различных действительных корня, которые можно найти по общей формуле.

Но эти преобразования довольно сложны, поэтому найдем корни, применяя теорему Виета.

Преобразуем уравнение к приведенному, получим:

 

По теореме Виета, сумма корней должна быть равна: а произведение

 

Такое возможно только в одном случае, если Это легко проверить, выполнив сложение и умножение корней.

 


Ответ:

 

1. Если

2. Если

3. Если

4. Если тогда

 

Задание 4

 

Решите уравнение относительно параметра a:

1.

2.

3.

4.

5.

 







Дата добавления: 2015-04-16; просмотров: 791. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия