Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решить уравнения на множестве действительных чисел





 

Пример 17.

 

Решение

Рассмотрим коэффициент при, который равен

1. Если что происходит при и тогда квадратное уравнение " вырождается " в линейное.

При, получаем при

2. Если тогда находим дискриминант и исследуем уравнение по дискриминанту.

D = 0 при

Если то уравнение имеет единственное решение

 

 

Если тогда уравнение имеет решение

 

 

Если и тогда дискриминант будет положительным и уравнение будет иметь два различных действительных корня

 

Ответ:

1. Если a = 0, x = 0. 2. Если a = -1, x = 2. 3. Если тогда

4. Если тогда

5. Если тогда уравнение имеет два различных действительных корня

 

Пример 18.

 

Решение

 

1. Если уравнение примет вид:

В свою очередь, это уравнение при a = 0 имеет бесконечное множество решений, При - единственное решение x = a.

2. Если Найдем дискриминант:

Преобразуем уравнение к приведенному, получим:

 

Это уравнение два различных действительных корня. По теореме Виета:

 

Нетрудно найти, что эти равенства выполняются, только в одном случае, когда и

В самом деле, только при этих значениях и будет выполняться теорема Виета для уравнения:

 

При других возможных комбинациях значений и сумма и произведение их не будут равны данным значениям по теореме Виета. (Конечно, можно воспользоваться обычным способом определения корней по формуле.)

 

Ответ:

 

1. Если тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если тогда уравнение имеет единственное решение

3. Если тогда уравнение имеет два различных действительных корня:

и

 


Пример 19.

 

Решение

 

Рассмотрим случай, когда первый коэффициент равен нулю:

Это произойдет при и

1. При, уравнение примет вид: откуда

2. При уравнение примет вид: откуда

3. Если тогда, чтобы уравнение имело корни, дискриминант должен быть неотрицательным:

После преобразований, получим: при любом действительном значении a.

 

1) Если D = 0, тогда уравнение имеет единственное решение. Это произойдет при и

 

Единственный корень уравнения, при этих значениях a определяется по формуле

 

В частности, при, при, также

 

2) Если, D > 0 и уравнение имеет два различных действительных корня, которые можно найти по общей формуле.

Но эти преобразования довольно сложны, поэтому найдем корни, применяя теорему Виета.

Преобразуем уравнение к приведенному, получим:

 

По теореме Виета, сумма корней должна быть равна: а произведение

 

Такое возможно только в одном случае, если Это легко проверить, выполнив сложение и умножение корней.

 


Ответ:

 

1. Если

2. Если

3. Если

4. Если тогда

 

Задание 4

 

Решите уравнение относительно параметра a:

1.

2.

3.

4.

5.

 







Дата добавления: 2015-04-16; просмотров: 791. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия