Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решить уравнения на множестве действительных чисел





 

Пример 17.

 

Решение

Рассмотрим коэффициент при, который равен

1. Если что происходит при и тогда квадратное уравнение " вырождается " в линейное.

При, получаем при

2. Если тогда находим дискриминант и исследуем уравнение по дискриминанту.

D = 0 при

Если то уравнение имеет единственное решение

 

 

Если тогда уравнение имеет решение

 

 

Если и тогда дискриминант будет положительным и уравнение будет иметь два различных действительных корня

 

Ответ:

1. Если a = 0, x = 0. 2. Если a = -1, x = 2. 3. Если тогда

4. Если тогда

5. Если тогда уравнение имеет два различных действительных корня

 

Пример 18.

 

Решение

 

1. Если уравнение примет вид:

В свою очередь, это уравнение при a = 0 имеет бесконечное множество решений, При - единственное решение x = a.

2. Если Найдем дискриминант:

Преобразуем уравнение к приведенному, получим:

 

Это уравнение два различных действительных корня. По теореме Виета:

 

Нетрудно найти, что эти равенства выполняются, только в одном случае, когда и

В самом деле, только при этих значениях и будет выполняться теорема Виета для уравнения:

 

При других возможных комбинациях значений и сумма и произведение их не будут равны данным значениям по теореме Виета. (Конечно, можно воспользоваться обычным способом определения корней по формуле.)

 

Ответ:

 

1. Если тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если тогда уравнение имеет единственное решение

3. Если тогда уравнение имеет два различных действительных корня:

и

 


Пример 19.

 

Решение

 

Рассмотрим случай, когда первый коэффициент равен нулю:

Это произойдет при и

1. При, уравнение примет вид: откуда

2. При уравнение примет вид: откуда

3. Если тогда, чтобы уравнение имело корни, дискриминант должен быть неотрицательным:

После преобразований, получим: при любом действительном значении a.

 

1) Если D = 0, тогда уравнение имеет единственное решение. Это произойдет при и

 

Единственный корень уравнения, при этих значениях a определяется по формуле

 

В частности, при, при, также

 

2) Если, D > 0 и уравнение имеет два различных действительных корня, которые можно найти по общей формуле.

Но эти преобразования довольно сложны, поэтому найдем корни, применяя теорему Виета.

Преобразуем уравнение к приведенному, получим:

 

По теореме Виета, сумма корней должна быть равна: а произведение

 

Такое возможно только в одном случае, если Это легко проверить, выполнив сложение и умножение корней.

 


Ответ:

 

1. Если

2. Если

3. Если

4. Если тогда

 

Задание 4

 

Решите уравнение относительно параметра a:

1.

2.

3.

4.

5.

 







Дата добавления: 2015-04-16; просмотров: 791. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия