Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знаки корней приведенного квадратного уравнения





 

Если свободный член q приведенного квадратного уравнения больше нуля, q>0, то оба корня имеют одинаковые знаки, либо оба положительны, либо оба отрицательны.

В самом деле, если и , тогда но значит если и тогда снова а значит, и в этом случае Нетрудно доказать и обратное утверждение.

Если к тому же, второй коэффициент имеет отрицательный знак (p < 0), то оба корня положительны, в противном случае, (при p > 0) оба корня отрицательны.

 

Если свободный член приведенного квадратного уравнения - отрицателен (q<0), тогда корни имеют разные знаки, что нетрудно доказать, подобно предыдущему.

Но здесь любопытно другое! Можно установить, который из корней имеет отрицательный знак, а какой - положительный.

Для этого достаточно обратиться к знаку второго коэффициента p. Если его знак отрицательный, значит больший по модулю корень, будет положительным, а меньший по модулю корень - отрицательный знак. Если знак второго коэффициента положительный, тогда больший по модулю корень будет отрицательным, а меньший положительным.

Доказательство этого факта предоставим читателю.

 

Примеры: а) б)

в) г)

 

В уравнении а) свободный член (12) положителен, значит, оба корня имеют одинаковые знаки. Второй коэффициент (-7) отрицателен, значит, оба корня положительны.

В самом деле, и

В уравнении б) свободный член положителен и второй коэффициент положителен, значит оба корня отрицательны.

Нетрудно проверить, что и

В уравнении в) свободный член отрицателен (-12), значит, корни имеют разные знаки, а поскольку второй коэффициент также отрицателен (-1), тогда больший по модулю корень будет положительным, а меньший по модулю - отрицателен.

Найдем корни и убедимся в этом:







Дата добавления: 2015-04-16; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия