Для любителей и знатоков. Кусочно-линейные функции и модули
Пусть заданы - точки смены формул. Функция f, определенная при всех x, называется кусочно-линейной, если она линейная на каждом интервале т. е. при i = 1, 2, …, n + 1), (1) где обозначено . Если к тому же выполнены условия согласования при i = 1, 2, …, n, (2) то рассматриваемая кусочно-линейная функция непрерывна. Непрерывная кусочно-линейная функция называется также линейным сплайном. Ее график есть ломаная с двумя бесконечными крайними звеньями - левым (отвечающим значениям x < x1). Подобный график изображен на рисунке 18:
Рис. 18 Функцию с графиком, показанным на этом рисунке, можно задать и одной и тремя формулами:
Однако нетрудно заметить, что эту же функцию можно задать и одной формулой, используя модули: y = |x| - |x - 1|. Оказывается, что и любую непрерывную кусочно-линейную функцию вида (1) можно задать некоторой формулой вида
, (3)
где числа a, b, c1, …, cn легко найти по графику данной функции.
Докажем это Заметим, что две ломанные с бесконечными крайними звеньями и одинаковыми абсциссами вершин совпадают, если у них равны угловые коэффициенты всех "одноименных" звеньев и имеется общая точка. Иными словами, знание угловых коэффициентов всех звеньев и координат одной точки такой ломаной на основе указанной информации, при котором данная точка берется за исходную, см. рисунок 19.
Рис. 19
Отмеченный факт мы и положим в основу получения формулы для непрерывной кусочно-линейной функции, заданной своим графиком. Напомним, что равняется , если , и , если . Поэтому на каждом из промежутков , , …, , на которые числовая прямая разбивается точками , функция, определяемая формулой (3), будет линейная (как сумма линейных функций), и для нахождения углового коэффициента соответствующего звена ломанной достаточно найти коэффициент при после раскрытия всех модулей в выражении (3) на соответствующих этим звеньям промежутках, находим: (4)
Вычитая из второго равенства первое, получаем вычитая из третьего второе, получаем и т. д. Мы приходим в итоге к соотношениям при (5) Складывая первое равенство с последним, получаем откуда . (6) Обратно, нетрудно проверить, что из равенств (5) и (6) вытекают соотношения (4). Итак, если коэффициенты определяются формулами (5) и (6), то угловые коэффициенты всех звеньев графика функции (3) совпадают с соответствующими угловыми коэффициентами заданного графика и, значит, остается обеспечить всего одну общую точку этих ломанных для их совпадения. Этого всегда можно добиться выбором подходящего значения оставшегося пока не определенным коэффициента . С этой целью достаточно подставить в формулу (3), коэффициенты которой уже вычислены из соотношений (5) и (6), координаты какой-либо одной точки данной ломаной и найти из полученного равенства.
Пример 1. Найдем уравнение ломаной, изображенной на рисунке 20 (треугольный импульс).
Рис. 20 Решение
Угловые коэффициенты звеньев таковы: . Поэтому . Значит, уравнение данной ломаной имеет вид . Найдем значение коэффициента b из условия y(0) = 1, подставляя координаты вершины (0; 1) нашей ломаной в уравнение, получим , откуда находим, b = 0, и уравнение окончательно запишем в виде .
|