Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Й способ





 

Область допустимых значений:

Воспользуемся свойством абсолютной величины:

Получим уравнение: Возведем обе части этого уравнения в квадрат, получим:

 

 

1. Если a = 2, тогда уравнение примет вид: уравнение имеет бесконечное множество решений из промежутка

2. Если тогда уравнение имеет решение Чтобы выяснить значения a, надо решить неравенство , куда вместо x подставить значение

Учитывая, что при a = 2 получаем:

Таким образом, при уравнение имеет решение

3. При , очевидно, уравнение не имеет решений.

 

 

Ответ:

1. Если a = 2, тогда уравнение имеет бесконечное множество решений из промежутка

2. Если a > 2, тогда уравнение имеет единственное решение .

3. Если то уравнение не имеет решений.

 

б)

 

Решение

 

Если тогда будем иметь уравнение:

После простых преобразований получим (a - 1)(a + 1)x = 1 - a.

При и уравнение имеет единственное решение но учитывая, что находим,

Отсюда ясно, что при уравнение имеет единственное решение

При a = -1 получаем уравнение которое не имеет решений.

При a = 1 уравнение примет вид которое имеет бесконечное множество решений на промежутке

Если x < 0, тогда получим уравнение которое преобразуется в уравнение Оно имеет единственное решение при любых действительных значениях a, но, учитывая, что x должно быть отрицательным, находим для a значения: 1 - a < 0, a > 1.

 

Остается выяснить решение уравнения при -1 < a < 1.

 

Нетрудно установить, что, в этом случае, уравнение не имеет корней.

 

В самом деле:

1) Если находим:

Поскольку , тогда что невозможно, ибо значит уравнение не имеет решений.

2) Если находим: .

Поскольку , тогда что невозможно, так как значит уравнение также не имеет решений.

 

Ответ:

 

1. Если , тогда

2. Если тогда уравнение не имеет решений.

3. Если a = 1, тогда

4. Если a > 1, тогда .

 

Пример 8. Решите уравнение |2 - |1 - |x = 1.

 

Решение

 

Решать будем это уравнение последовательно " раскрывая " модули, начиная с " внешнего " и " приближаясь " к переменной x.

После раскрытия первого модуля, получим совокупность двух уравнений:

(1) 2 - |1 - |x|| = 1 или (2) 2 - |1 - |x|| = - 1.

Решая уравнение (1), в свою очередь, получаем два уравнения:

|1 - |x|| = 1,

(3) 1 - |x| = 1 или (4) 1 - |x| = -1.

 

Из уравнения (3) находим: |x| = 0, из уравнения (4) находим: |x| = 2,

Решая уравнение (2), также получим: |1 - |x|| = 3, которое распадается два уравнения: (3') 1 - |x| = -3 или (4') 1 - |x| = 3.

 

Из (3') получаем: |x| = 4, Из (4') |x| = -2, которое не имеет решений.

Ответ:







Дата добавления: 2015-04-16; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия