Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Установление зависимости между корнями двух уравнений. Еще один способ решения квадратного уравнения





 

Пример 14. Какая зависимость существует между корнями двух уравнений, где a, b, c, p, q не равны 0: и

 

Решение

 

Во-первых, корни уравнений должны существовать (первые коэффициенты не равно нулю по условию), значит, для первого уравнения: для второго уравнения: или откуда получаем такое же соотношение, как и для первого уравнения:

Пусть и - корни первого уравнения, а и - корни второго уравнения. По теореме Виета, для первого уравнения, находим:

Для второго уравнения, по теореме Виета, имеем:

Подставим в последние два равенства вместо

В результате такой подстановки получаем:

 

Ответ:

 

Пример 15. Найдите корни уравнения если

 

Решение

1. Если a = 0, тогда уравнение примет вид:, а условие станет таким: Из условия находим: уравнение примет вид

a) Если b = 0, тогда получим - это уравнение имеет бесконечное множество решений, x - любое действительное число.

б) Если тогда

2. Если тогда найдем дискриминант

Из соотношения выразим b и подставим в выражение для дискриминанта:

a) При a = c имеет один корень:

b) При уравнение имеет два различных корня:

 

 

Ответ:

 

1. a) Если a = 0 и b = 0, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

б) Если a = 0, но тогда x = 1.

2. а) Если и, тогда уравнение имеет один корень:

б) Если и тогда уравнение имеет два различных действительных корня:

 

Пример 16. Найти рациональный способ решения следующих уравнений:

1) 2)

 

Решение

 

1)

Находим дискриминант: Он будет неотрицательным при любом действительном значении b.

Рассмотрим два случая.

1. В этом случае уравнение имеет единственный корень

2, Если тогда и уравнение имеет два различных действительных корня, которые легко найти по теореме Виета. Их сумма должна быть равна, а произведение равно Только два числа дают в сумме, а в произведении - это и 1. Значит,

 

Ответ: 1. Если, тогда уравнение имеет единственный корень

2. Если тогда уравнение имеет два различных корня:

 

2)

 

Решение

 

1. Если Это возможно в двух случаях, при и

Если b = 0, тогда уравнение примет вид которое при a = 0 имеет бесконечное множество решений, а при - единственное решение: x = 1.

Если a = b = 0, то этот случай уже рассмотрен - уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если, тогда будем решать уравнение, как квадратное относительно x. Для этого преобразуем его к приведенному, для чего разделим обе части уравнения на

Получим уравнение

Пусть и - корни уравнения, тогда, по теореме Виета, сумма корней равна:

 

а их произведение равно

 

Теперь становится понятным, что корнями уравнения могут быть только числа:

В самом деле, произведение корней дает:

Покажем, что их сумма равна второму коэффициенту с противоположным знаком:

 

 

Ответ:

 

1. Если a = b = 0, тогда уравнение имеет бесконечное множество решений.

2. Если b = 0, но тогда уравнение имеет единственное решение x = 1.

3. Если и тогда уравнение имеет два корня

 

 







Дата добавления: 2015-04-16; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия