Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Установление зависимости между корнями двух уравнений. Еще один способ решения квадратного уравнения





 

Пример 14. Какая зависимость существует между корнями двух уравнений, где a, b, c, p, q не равны 0: и

 

Решение

 

Во-первых, корни уравнений должны существовать (первые коэффициенты не равно нулю по условию), значит, для первого уравнения: для второго уравнения: или откуда получаем такое же соотношение, как и для первого уравнения:

Пусть и - корни первого уравнения, а и - корни второго уравнения. По теореме Виета, для первого уравнения, находим:

Для второго уравнения, по теореме Виета, имеем:

Подставим в последние два равенства вместо

В результате такой подстановки получаем:

 

Ответ:

 

Пример 15. Найдите корни уравнения если

 

Решение

1. Если a = 0, тогда уравнение примет вид:, а условие станет таким: Из условия находим: уравнение примет вид

a) Если b = 0, тогда получим - это уравнение имеет бесконечное множество решений, x - любое действительное число.

б) Если тогда

2. Если тогда найдем дискриминант

Из соотношения выразим b и подставим в выражение для дискриминанта:

a) При a = c имеет один корень:

b) При уравнение имеет два различных корня:

 

 

Ответ:

 

1. a) Если a = 0 и b = 0, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

б) Если a = 0, но тогда x = 1.

2. а) Если и, тогда уравнение имеет один корень:

б) Если и тогда уравнение имеет два различных действительных корня:

 

Пример 16. Найти рациональный способ решения следующих уравнений:

1) 2)

 

Решение

 

1)

Находим дискриминант: Он будет неотрицательным при любом действительном значении b.

Рассмотрим два случая.

1. В этом случае уравнение имеет единственный корень

2, Если тогда и уравнение имеет два различных действительных корня, которые легко найти по теореме Виета. Их сумма должна быть равна, а произведение равно Только два числа дают в сумме, а в произведении - это и 1. Значит,

 

Ответ: 1. Если, тогда уравнение имеет единственный корень

2. Если тогда уравнение имеет два различных корня:

 

2)

 

Решение

 

1. Если Это возможно в двух случаях, при и

Если b = 0, тогда уравнение примет вид которое при a = 0 имеет бесконечное множество решений, а при - единственное решение: x = 1.

Если a = b = 0, то этот случай уже рассмотрен - уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если, тогда будем решать уравнение, как квадратное относительно x. Для этого преобразуем его к приведенному, для чего разделим обе части уравнения на

Получим уравнение

Пусть и - корни уравнения, тогда, по теореме Виета, сумма корней равна:

 

а их произведение равно

 

Теперь становится понятным, что корнями уравнения могут быть только числа:

В самом деле, произведение корней дает:

Покажем, что их сумма равна второму коэффициенту с противоположным знаком:

 

 

Ответ:

 

1. Если a = b = 0, тогда уравнение имеет бесконечное множество решений.

2. Если b = 0, но тогда уравнение имеет единственное решение x = 1.

3. Если и тогда уравнение имеет два корня

 

 







Дата добавления: 2015-04-16; просмотров: 509. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия