Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование однородного уравнения в системе





Выражение называется однородным по х и у, если оно представляет собой многочлен, в каждое слагаемое которого входят только целые неотрицательные степени переменных х и у и их суммарная степень одна и та же во всех слагаемых.

 

Например, однородными являются следующие многочлены: .

 

Уравнение называется однородным, если оно имеет вид , в котором – это однородное выражение по х и у.

Например, однородными являются следующие уравнения: , , .

Однородное уравнение всегда имеет тривиальное решение .

Другие его решения можно найти, если в этом уравнении перейти к отношению неизвестных делением обеих частей равенства на у 2.

 

ПРИМЕРЫ

1. Решим систему .

Решение

Первое уравнение системы является однородным по неизвестным х и у.

Поработаем с ним отдельно, записав сначала его тривиальное решение, а затем разделив обе части уравнения на :

,

переходом к отношению неизвестных получили квадратное уравнение относительно этого отношения ; решаем это квадратное уравнение:

, .

Возвращаемся в исходную систему, используя результаты работы с однородным уравнением:

Всего система имеет четыре решения, которые подтверждаем проверкой, подставляя каждое решение в исходную систему.

 

Проверка:

 

 

 

 

 

 

Ответ: , , , .

 

2. Решим систему .

Решение

В данной системе можно получить однородное уравнение, если алгебраическим сложением уравнений получить уравнение с правой частью, равной нулю:

– однородное уравнение.

 

Чтобы в пару к однородному уравнению получить более простое уравнение, сделаем ещё одно алгебраическое сложение уравнений с целью исключить произведение ху:

.

В результате данная система заменится на равносильную систему, в которой есть однородное уравнение:

.

Тривиальное решение однородного уравнения второму уравнению системы не удовлетворяет, поэтому это тривиальное решение можно не рассматривать, а перейти в однородном уравнении сразу к отношению делением обеих частей уравнения на .

В результате вновь получаем систему, равносильную данной:

 

Система имеет 4 решения, подтверждаемых проверкой.

 

Ответ: , , , .

 







Дата добавления: 2015-04-16; просмотров: 360. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия