Решение задачи. Для решения задачи симплекс-методом неравенства преобразуются в эквивалентные равенства путём добавления в каждое неравенство по одному дополнительному
Для решения задачи симплекс-методом неравенства преобразуются в эквивалентные равенства путём добавления в каждое неравенство по одному дополнительному неизвестному с коэффициентом +1 и нулевым уравнением прибыли. Для удобства расчётов левые и правые части уравнения меняются местами. В этом случае исходные неравенства примут вид симплексных уравнений: Коэффициенты при неизвестных записываются в симплексной таблице, в которой выполняются расчёты и отражаются полученные результаты.
В столбцах таблицы записывают: в первом (Сj) – прибыль единицы продукции, которая вводится в план выпуска; во втором (P0) – свободные величины; в остальных – коэффициенты при неизвестных уравнений. В верхней части этих столбцов отражаются коэффициенты неизвестных целевой функции. В нижней строке (целевой) записываются получаемые расчётным путём показатели: в столбце X0 – суммарная прибыль планового выпуска, в остальных столбцах прибыль единицы продукции с отрицательным знаком. В последних трёх столбцах коэффициенты при дополнительных неизвестных, равные единице, расположены по диагонали. Эта часть таблицы, называемая единичной подматрицей, необходима для вычислительных и аналитических целей. При решении задач на максимум целевой функции наличие в целевой строке отрицательных чисел указывает на возможность начала или продолжения решения задачи. Порядок решения таков: из отрицательных чисел целевой строки выбирается наибольшее по модулю. Столбец, в котором оно находится, принимается за ключ (или разрешающий) и для удобства расчётов выделяется. В нашем примере таким столбцом будет X1, имеющий в целевой строке наибольшую по модулю величину (-28).
|