Явление сокращения объема при смешении жидкостей известно под названием контрактация
3) Растворение безводного сульфата меди, не имеющего окраски, сопровождается появлением интенсивной голубой окраски. Например: Все эти явления свидетельствуют об изменении химической природы вещества при растворении. Растворение - не только физический, но и химический процесс. В1887г Д.И. Менделеев создал химическую (гидратную) теорию растворов согласно которой: «Растворы суть химические соединения, определяемые силами, действующими между растворителем и растворенным веществом». В результате химического взаимодействия частиц растворенного вещества с молекулами растворителя образуются сольваты - продукты переменного состава. Если растворитель вода они называются г идраты. Сольваты (гидраты) образуются за счет донорно - акцепторного, диполь - дипольного взаимодействия, за счет водородных связей, а также дисперсионного взаимодействия. Эти соединения непрочны и легко разлагаются. Однако в ряде случаев образуются прочные соединения, которые можно легко выделить из раствора путем кристаллизации. Это кристаллические вещества, содержащие молекулы воды и называются кристаллогидратами,а вода, входящая в их состав называется кристаллизационной. Примеры кристаллогидратов многочисленны: CuS04 · 5H20, Na2S04 · 10Н2О, СгС13 · 6Н20 и др. Кристаллогидраты сохраняют окраску, характерную для соответствующих растворов. Это служит доказательством существования в растворе аналогичных гидратных комплексов. Растворение многих неионных веществ, например сахара, мочевины, спирта или глицерина в воде также объясняется сольватацией. Растворенные вещества ионного типа состоят из полярных молекул и поэтому вступают в диполь - дипольное взаимодействие с растворителем. Физическая теория растворов развивалась трудами Вант-Гоффа, Рауля, Аррениуса. Согласно физической теории, движение частиц растворенного вещества в растворе, аналогично хаотическому движению молекул газа. При этом считается, что взаимодействия между растворенным веществом и растворителем нет, и растворитель рассматривается как индифферентная среда. Современная теория растворов - это синтез физической и химической теории, но до конца еще не разработана. Сейчас процесс растворения рассматривается как физико-химический процесс, а растворы - как физико-химические системы. При смешении некоторых жидкостей, молекулы которых неполярны, сходны между собой по структуре и химической связи, тепловые и объемные изменения очень малы. Например, для процесса смешения толуола с бензолом ΔН≈ 0, ΔV≈0. Смеси, в процессе образования которых отсутствуют тепловые и объемные эффекты, т.е. ΔН= 0 и AV= 0 называются идеальными растворами. Свойства идеальных растворов, подобно свойствам разреженных газовых смесей, не зависят от природы растворенного вещества, а определяются лишь их концентрацией. К ним применимы законы идеальных газов, т.е. физическая теория растворов. К идеальным растворам крайне близки разбавленные растворы. В таких растворах частицы растворенного вещества находятся на большом расстоянии друг от друга и из-за этого взаимодействием между частицами растворенного вещества можно пренебречь, а растворитель практически не меняет своих свойств. Согласно второму началу термодинамики при р, Т = = const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т. е. ΔG = (ΔН – TΔS) < 0. Величину ΔН называют энтальпийным фактором, а величину TΔS – энтропийным фактором растворения. При растворении жидких и твердых веществ энтропия системы обычно возрастает (ΔS > 0), так как растворяемые вещества из более упорядоченного состояния переходят в менее упорядоченное. Вклад энтропийного фактора, способствующий увеличению растворимости, особенно заметен при повышенных температурах, потому что в этом случае множитель Т велик и абсолютное значение произведения TΔS также велико, соответственно возрастает убыль энергии Гиббса. При растворении газов в жидкости энтропия системы обычно уменьшается (ΔS < 0), так как растворяемое вещество из менее упорядоченного состояния (большого объема) переходит в более упорядоченное (малый объем). Снижение температуры благоприятствует растворению газов, потому что в этом случае множитель Т мал и абсолютное значение произведения TΔS будет тем меньше, а убыль энергии Гиббса тем больше, чем ниже значение Т. В процессе образования раствора энтальпия системы также может как увеличиваться (NaCI), так и уменьшаться (КОН). Изменение энтальпии процесса растворения нужно рассматривать в соответствии с законом Гесса как алгебраическую сумму эндо– и экзотермических вкладов всех процессов, сопровождающих процесс растворения. Это эндотермические эффекты разрушения кристаллической решетки веществ, разрыва связи молекул, разрушения исходной структуры растворителя и экзотермические эффекты образования различных продуктов взаимодействия, в том числе сольватов. Для простоты изложения приращение энтальпии растворения ΔНраств можно представить как разность энергии Екр, затрачиваемой на разрушение кристаллической решетки растворяемого вещества, и энергии Есол, выделяющейся при сольватации частиц растворенного вещества молекулами растворителя. Иначе говоря, изменение энтальпии представляет собой алгебраическую сумму изменения энтальпии ΔНкр в результате разрушения кристаллической решетки и изменения энтальпии ΔНсол за счет сольватации частицами растворителя: ΔНраств = ΔНкр + ΔНсол, где ΔНраств – изменение энтальпии при растворении. Однако растворение благородных газов в органических растворителях нередко сопровождается поглощением теплоты, например гелия и неона в ацетоне, бензоле, этаноле, циклогексане. При растворении твердых веществ с молекулярной кристаллической структурой и жидкостей молекулярные связи не очень прочные, и поэтому обычно ΔНсол > ΔНкр Это приводит к тому, что растворение, например, спиртов и сахаров представляет собой экзотермический процесс (ΔНраств < 0). При растворении твердых веществ с ионной решеткой соотношение энергий Екр и Есол могут быть различным. Однако в большинстве случаев энергия, выделяемая при сольватации ионов, не компенсирует энергию, затрачиваемую на разрушение кристаллической решетки, следовательно, и процесс растворения является эндотермическим. Таким образом, термодинамические данные позволяют прогнозировать самопроизвольное растворение различных веществ на основе первого и второго начал термодинамики 23) 23
Фазовое равновесие это термодинамическое равновесие в гетерогенной системе, в которой не происходит химического взаимодействия, а имеют место только процессы перехода из одной фазы в другую. Качественная характеристика таких равновесных систем дается правилом фаз Гиббса. Оно основано на 2-ом законе термодинамики и относится к системам, находящимся в состоянии истинного равновесия.
|