Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конечное множество состоит из конечного числа элементов, например, множество страниц в книге, множество учеников в школе и т.д





Пустое множество () не содержит ни одного элемента, например, множество крылатых слонов, множество корней уравнения sin x = 2 и т.д.

Бесконечное множество состоит из бесконечного числа элементов, т.е. это множество, которое неявляется ни конечным, ни пустым. Примеры: множество действительных чисел, множество точекплоскости, множество атомов во Вселенной и т.д.

Счётное множество – множество, элементы которого можно пронумеровать. Например, множества натуральных, чётных, нечётных чисел. Счётное множество может быть конечным (множество книг в библиотеке) или бесконечным (множество целых чисел, его элементы можно пронумеровать следующим образом:

элементы множества: …, –5, – 4, –3, –2, –1, 0, 1, 2, 3, 4, 5, …

номера элементов:... 11 9 7 5 3 1 2 4 6 8 10...).

Несчётное множество – множество, элементы которого невозможно пронумеровать. Например, множество действительных чисел. Несчётное множество может быть только бесконечным (продумайте, почему?).

Выпуклое множество – множество, которое наряду с любыми двумя точками А и В содержит также весь отрезок АВ. Примеры выпуклых множеств: прямая, плоскость, круг. Однако, окружностьне является выпуклым множеством.

Способы задания множеств. Множество может быть задано следующим образом:

– перечислением всех его элементов по их названиям (так описываются множество книг в библиотеке, множество учеников в классе, алфавит любого языка и т.д.);

– заданием общей характеристики (общих свойств) элементов данного множества (например, множество рациональных чисел, собаки, семейство кошачих и т.д.);

– формальным законом построения элементов множества (например, формула общего члена числовой последовательности, Периодическая система элементов Менделеева и т.д.).

26. Функция (отображение, оператор, преобразование) — математическоепонятие, отражающее связь между элементами множеств. Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством. Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.1) Область определения функции и область значений функции.

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y, которые принимает функция
.







Дата добавления: 2015-04-19; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия