Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Ньютона. Это классический метод второго порядка





Это классический метод второго порядка. Если направление градиента находится из линейного представления функции в окрестности текущей точке, то в методе Ньютона используется квадратичная аппроксимация функции цели. Квадратичная аппроксимация дифферен­цируемой функции f в точке X k записывается в виде

, где Н – матрица вторых производных функции f (матрица Гессе). В стационарной точке градиент функции равен нулю, что применительно дает Полагая матрицу H неособенной (существует обратная к ней матрица), получаем рекуррентный способ генерирования последовательности точек

Исходя из вывода формулы ясно, что для квадратичной функции цели X k +1 является точкой минимума. Следовательно, минимум такой функции из любой начальной точки достигается за один шаг. Для нелинейной унимодальной функции, отличной от квадратичной, точки последовательности асимптотически приближаются к минимуму. Условие окончания поиска: . (В случае линейной аппроксимации матрица Н становится единичной и поиск вырождается в градиентный).

Необходимым условием сходимости метода является существование обратной матрицы во всех генерируемых точках. Доказательство сходимости метода получено при условии, что начальная точка достаточно близка к точке минимума. При этом метод имеет высокую скорость сходимости. Если поиск начинается с удаленной точки и функция существенно отличается от квадратичной, метод может не сходиться или давать слабую сходимость. Причина такого поведения в том, что значение функции в точке X k+ 1 не обязательно меньше, чем в точке X k. Для устранения отмеченных недостатков предложены модификации метода. Чтобы обеспечить регуляризацию матрицы Н (невырожденность), она деформируется добавлением к ней единичной матрицы с неотрицательным скалярным множителем e: H¢= Н+ e ×Е. Значение e зависит от X и подбирается так, чтобы все собственные значения матрицы H¢ были положительными. Тогда эта матрица положительно определена и существует обратная матрица H¢-1, которая также положительно определена. Возможное ухудшение функции в очередной точке исключается введением в формулу изменяемого параметра h. Модифицированная формула принимает вид

При этом возможен вариант с дискретным шагом h, как в градиентном методе, либо с определением оптимального h* с помощью одномерной минимизации (наискорейший спуск):

Пример поиска минимума функции
f =(1- x 1)2+5(x 12- x 2)2 методом Ньютона с регулируемым шагом приведен на рис.







Дата добавления: 2015-04-19; просмотров: 907. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия