Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы сопряженных направлений





Как и метод Ньютона, методы сопряженных направлений основаны на свойствах квадратичных функций. В связи с этим говорят о сопряженных направлениях относительно квадратичной функции. Пусть дана матрица Н n´n. Направления d1, d2,..., dk (k £ n) называются сопряженными или Н-сопряженными, если они линейно независимы и .

Эти векторы определяют сопряженные направления. Для квадратичной функции двух переменных сопряженные направления получаются следующим образом. Возьмем произвольное направление d 1 и на нем найдем минимум, двигаясь из точки X1. Повторим поиск минимума на d 1 из точки X2¹ X1 . Направление d 2, определяемое прямой, проходящей через найденные минимумы, является сопряженным с направлением d 1. При этом направление d 2 проходит через искомый минимум функции f. Следовательно, при любой начальной точке минимум квадратичной функции двух переменных достигается за два одномерных поиска вдоль сопряженных направлений.

Пример: Используя сопряженные направления, найти минимум функции (точка минимума X*=(2,4)). Запишем матрицу Гессе . Возьмем . . Пусть а = 1, получаем

b = 2 и . Возьмем начальную точку X0=(-1;1). Найдем минимум на направлении d 1. Для этого подставим в функцию X = X0+ h d 1, то есть x 1= x 10+ h = -1+ h, x 2= x 20=1. Тогда f = h 2-3 h -3 и минимум по h будет при h *=1,5. Следовательно, минимум на d 1 достигается в точке X1=(0,5;1). Приняв ее за начальную для поиска вдоль d 2 и подставляя в функцию x 1= 0,5+ h, x 2=1+2 h, получаем f = 3 h 2-9 h -5,25. Находим h *=1,5 и соответствующую новую точку X2=(2;4). Как видим, второй одномерный поиск привел в точку искомого минимума f.

Для квадратичной функции n переменных сопряженные направления позволяют найти минимум не более чем за n одномерных поисков. В случае нелинейной функции, отличной от квадратичной, конечное число итераций дает только приближенное решение.

Методы, основанные на концепции сопряженных направлений, различаются способами построения таких направлений.

Методы Пауэла, Флетчера-Ривса, Девидона-Флетчера-Пауэла
43. Методы случайного поиска
.

Методы основаны на использовании случайного механизма задания начальной точки и выбора направления движения. Так как в процессе поиска вычисляются значения только целевой функции, эти методы можно отнести к классу прямых.

Случайный механизм выбора направления реализуется с помощью датчика случайных чисел b, равномерно распределенных на интервале [- b, b ]. Направление задается случайным вектором X = (x 1, x 2, x 3,..., x n), компоненты которого вычисляются по формуле:

,где n случайных чисел bi генерируются датчиком. Такой случайный вектор имеет единичную длину и определяет только направление. При этом все направления равновероятны.

Приведем несколько простых алгоритмов случайного поиска.







Дата добавления: 2015-04-19; просмотров: 852. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия