Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система отсчета равномерно вращается (материальная точка покоится в НИСО, материальная точка движется в НИСО). Теорема Кориолиса





1 – антенатальная (до родов)

2 – интранатальная (во время родов)

3 – постнат (на 1 нед жизни), ранняя неонат

4 – поздн неонат на 2-4 нед жизни

5 – 1-12 мес – постнат

1,2 – мертворожд

1,2,3 – перенатальн

3,4 – ранняя дет смертность

Брутто коэф. – число девочек, рождаемых 1 жен за ее детородный период

Нетто коэф. – число девочек, рожд 1 жен за ее детород период и доживш до детородн периода.150ОМС – система отношений, обеспечивающих защиту мат и соц положения застрахованных лиц и гарантирующих оказание мед помощи при наступлении страхового случаа, определенного зоконодат РФ. Основой для принятого Россией законом «о мед страх граждан в РСФСР» стала галландская модель организации мед страх-я. (уменьшение различий в общественном положении малообеспеч слоев населения и высокооплач граждан.

В 1993г было принято Постановление Верховного Совета РФ №45-43-1, а за тем закон РФ «о внесении изменений дополнений в закон РСФСР «о мед страховании граждан в РСФСР»».

Такая инфраструктура была создана – Федеральным фондом ОМС РФ, а в регионах – территориальными фондами ОМС.

Страховые мед организации могут:

- свободно выбирать мед учреждения для оказания мед помощи и услуг по договорам мед страх;

- участие в аккредитации мед учреждений;

- принимает участие в определении тарифов на мед услуги;

- предьявлять в судебном порядке мед учр-ю или мед раб-ку и страх комп о материальнром возмещении финансового или морального ущерба, причененному застрахованному по их вине.

Страховые мед орг-и обязаны:

- осуществлять деятельность по ОМС на некомерч основе;

- заключить договора с ЛПУ (согласно закону РФ от 91г) на оказание мед помощи застрахованным по ОМС

- тщательно выполнять все условия в заключенных договорах

- создавать в установленном порядке страховые резервы

- защищать интересы застрахованным

Пути формирования ЗОЖ.

1.обеспеч.здоровые условия жизни населения.Решается ч-з с-му эконо-

мич.и социальн.мероприятий,провод.гос-м

2.формир-е здорового поведения населения путем пропаганды ЗОЖ,с-ма

обуч-я,воспитания,созд.гос-вом на всех уровнях.

ЗОЖ-универсальный,широко доступный не требующий значительных ма-

тер.затрат,способ оптимизации всех с-м орг-ма,способ сохранения и укрепле-

ния здоровья,продления активной жизни.ЗОЖ дает эффект на всех этапах жиз-

ни,может предовратить преждеврем.смерть.От онкологич.патологии-каждый 3

случай от сердечнососуд.патологии.

Для формир-я ЗОЖ важен пример врачебного конт

Система отсчета равномерно вращается (материальная точка покоится в НИСО, материальная точка движется в НИСО). Теорема Кориолиса.

Пусть дан диск который равномерно вращается с угловой скоростью ω и пусть шарик соединен с центром диска пружиной. Шарик покоится. В этом случае он занимает положение при к-ом сила натяжения пружины оказывается равной так выглядит ситуация со стороны ИСО. Свяжем с диском и вращающуюся с/с отсчета в к-ой диск и шарик покоятся т.е нах-ся в равновесии. Тут равновесие можно объяснить действием силы инерции . Силу инерции действующую на м/т в равномерно вращающейся с/с отсчета называют центробежной силой. Д.т.ч. описать состояние покоя в такой НИСО необходимо учитывать центробежную силу инерции.

Пусть шарик масоой m движется вдоль радиуса с постоянной скоростью . Начнем вращать диск с тогда когда шарик достигнет края окажется в точке В. относительно диска. Поэтому в с/с связанной с вращающимся диском на шарик действовала сила инерции кот-ую назвали силой Кориолиса.

движется относительно вращающейся с/сы отсчета равномерно по ркружности в перпенд плоскости оси вращеня . Для того чтобы частица двигалась по окружности относительно ИСО на неё д.действовать сила направленная к центру окружности . В НИСО , - сила Кориолиса. сила кориолиса действует только на тела движущиеся относительно вращающейся системы отсчета и -на , находится по правилу буравчика.

 

 







Дата добавления: 2015-04-19; просмотров: 825. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия