Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей





Найти количество каждого продукта, при котором общая стоимость рациона была бы минимальной

 

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Примеры определителей второго порядка:

2. Правило вычисления определителя третьего порядка (правило Саррюса)

Определителем третьего порядка называется выражение вида:

Элементы а 11; а 22; а 33 – образуют главную диагональ.

Числа а 13; а 22; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:

" + " " – ";

 

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют правилом треугольника

Примеры вычисления определителей по правилу треугольников:

3. Правило Крамера для решения систем уравнений.

 

Крамер применил теорию определителей к решению систем линейных уравнений.

1. Система двух линейных уравнений с двумя неизвестными.

(1)

Здесь х1, х2 – неизвестные;

а11, …, а22– коэффициенты при неизвестных, занумерованные двумя индексами, где первый индекс означает номер уравнения, а второй индекс – номер неизвестного.

b1, b2 – свободные члены.

Под решением системы (1) понимается пара значений х1, х2, которые при подстановке в оба уравнения обращают их в верные равенства.

В случае, когда система имеет единственное решение, это решение можно найти с помощью определителей второго порядка.

Определитель, составленный из коэффициентов при неизвестных, называется определителем системы.

Обозначим определитель системы D. D = .

В столбцах определителя D стоят коэффициенты соответственно при х 1и при , х 2.

Введем два дополнительных определителя,которые получаются из определителя системы заменой одного из столбцов столбцом свободных членов:

D1 = D2 = .

Теорема Крамера (для случая n = 2): Если определитель D системы (1) отличен от нуля (D¹ 0), то система имеет единственное решение, которое находится по формулам:

(2)

Формулы (2) называются формулами Крамера.

Пример: решить систему по правилу Крамера.

.

 

Ответ: х 1 = 3; х 2 = -1

2. Система трех линейных уравнений с тремя неизвестными:

(3)

В случае единственного решения систему (3) можно решить с помощью определителей третьего порядка.

Определитель системы D имеет вид:

Введем три дополнительных определителя:

.

Аналогично формулируется теоремаКрамерадля случая n = 3:

Если определитель D системы (5) отличен от нуля, то система имеет единственное решение, которое находится по формулам:







Дата добавления: 2015-04-19; просмотров: 507. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия