Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предел функции в точке





 

y f(x)

 

 

A + e

A

A - e

 

 

0 a - Daa + Dx

 

 

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

 

Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что 0 <ïx - aï<D

верно неравенство ïf(x) - Aï<e.

Запись предела функции в точке:

2. Бесконечно малая функция в точке (на бесконечности).

Определение: Функция y=f(x) называется бесконечно малой функцией в точке x=a (при x ), если её предел в этой точке равен нулю: .

Теорема:Алгебраическая сумма и произведение конечного числа бесконечно малых функций в точке а, как и произведение бесконечно малой на ограниченную функцию, являются бесконечно малыми функциями в точке а.

3. Бесконечно большая функция в точке (на бесконечности).

Определение:Функция называется бесконечно большой функцией в точке , если для любой сходящейся к а последовательности значений аргумента соответствующая последовательность значений функции является бесконечно большой.

Записывают это так: , , , .

Важно помнить, что не существует такого понятия как «просто бесконечно малая функция» или «просто бесконечно большая функция». Функция может быть бесконечно малой или бесконечно большой только в конкретной точке.

4. Теоремы о связи между бесконечно малой и бесконечно большой функциями в точке.

Теорема 1: Если функция f(x) является бесконечно большой при x→a, то функция 1/f(x) является бесконечно малой при x→a.

Пример:Ясно, что при x→+∞;функция y = x2+ 1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞;, т.е. .

Теорема 2 (обратная): Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y=1/f(x) является бесконечно большой функцией.

5. Теоремы о пределах функции:о сумме; о произведении; о частном двух функции; о постоянном множителе).

Основные теоремы о пределах.

Теорема 1. , где С = const.

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

Теорема 2.

Доказательство этой теоремы будет приведено ниже.

Теорема 3.

Следствие.

Теорема 4. при

6. Правило раскрытия неопределенности типа .

Пример:

.

При вычислении предела неопределённости вида числитель и знаменатель дроби надоразделить на x в старшей степени.

7. Правило раскрытия неопределенности типа .

Пример:

..

При вычислении неопределённости вида нужно разложить числитель и знаменатель на множители и сократить, затем подставить предельное значение аргумента и вычислить предел.

При раскрытии неопределённостей вида и можно использовать правило Лопиталя.

Теорема (правило Лопиталя). Пусть функции f(x) и g(x) определены и дифференцируемы в некоторой окрестности точки а за исключением, быть может, самой точки а. Кроме того, пусть , причём в указанной окрестности точки а. Тогда если существует предел отношения (конечный или бесконечный),то существует и предел , причём справедлива формула

.

Замечание 1. Правило Лопиталя можно применять повторно, если и удовлетворяют тем же требованиям, что и исходные функции f(x) и g(x).

Замечание 2. Теоремаостаётся верной и в случае, когда .

Пример 1.

Пример 2.

Пример 3.

Неопределённости вида

Правило Лопиталя остаётся справедливым при замене условия на условие .

Пример 4.







Дата добавления: 2015-04-19; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия