Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение производной функции, геометрический и физический смыслы производной





Придадим значению аргумента х0 функции f(x), определённой на промежутке Х, произвольное приращение Δ х так, чтобы точка х0 + Δ х также принадлежала Х. Тогда соответствующее приращение функции f(x) составит Δ у = f(x + x0) – f(x0).

Определение 1. Производной функции f(x) в точке х0 называется предел отношения приращения функции в этой точке к приращению аргумента Δ х → 0 (если этот предел существует).

Для обозначения производной функции применяют символы или

(1)

Геометрический смысл производной

Определение 2. Касательной к графику функции y = f(x) в точке М называется предельное положение секущей MN, когда точка N стремится к точке М по кривой f(x).

φ(Δx)
φ0
φ0
f(x0+ )
f(x0)
x0+
x0
N
М
y=f(x)
Рис. 1

Таким образом, если производная функции f(x) в точке х0 существует, то

. (2)

Производная равна тангенсу угла между касательной к графику функции y = f(x) в точке М(х0, f(x0)) и положительным направлением оси (ох)

Физический смысл производной

Производная функции определяет мгновенную скорость функции.

3. Правила дифференцирования суммы, произведения, частного двух функций:

1. Если функции и дифференцируемы в данной точке , то в той же точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых:

(1)

Пример 1. Найти производную функции

2. Если функции и дифференцируемы в данной точке , то в той же точке дифференцируемо и их произведение. При этом производная произведения находится по следующей формуле:

(2)

Пример 2. Найти производную функции

3. Если функция дифференцируема в данной точке , то в той же точке дифференцируема и функция, представляющая собой произведение функции на константу . При этом данную константу можно вынести за знак производной:

(3)

Пример 3. Найти производную функции

4. Если в данной точке функции и дифференцируемы и , то в той же точке дифференцируемо и их частное , причем:

(4)

Пример 4. Найти производную функции

 

Таблица производных элементарных функций.

1. где С – постоянное число.

2. ; в частности, ,

3. в частности,

4. в частности,

5. 6.

7. 8.

 

4.Сложная функция и правило ее дифференцирования.

Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

(5)

Пример 1. Найти производную функции

Практические задания:

Найти производные функции:

1. 2.

3. 4.

5. 6.

Тема 4: «Применение производной функции в построении графиков функции».







Дата добавления: 2015-04-19; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия