Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод граничных элементов при решении контактных задач. Алгоритм дискретизации. Определение напряжений и перемещений





ПЛОСКИЕ КОНТАКТНЫЕ ЗАДАЧИ

Имеем некоторое пространственное тело:

 
 


z S

       
   
 
 

 

 


x

 

y

Тогда, например, состояние деформируемого тела описывается под силой усилий S тензором напряжения , где i=1,2,3.

Предположим, что координата z, которая тождественно описывается индексом «ξ» = 0. Тогда имеем тело в плоскости xy.

y

 

 
 


x

и все контактные задачи будем рассматривать в плоскости xy.

Плоская задача:

Действие сосредоточенной силы на упругую изотропную полуплоскость.

Многие задачи контактного деформирования сводятся к решению действия сосредоточенной силы на упругую полуплоскость.

Эта задача рассмотрена Фломаном и известна как задача Фломана.

Задача Фламана иллюстрируется:

Имеем упругую полуплоскость и пусть на нее действует сосредоточенная сила:

y

 

 
 


P

 
 


E

 

Сила действует перпендикулярно плоскости (сила P). Полуплоскость имеет модуль упругости E и – коэффициент Пуассона.

Эта задача была решена в 1892 г.

Постановка задачи:

Задана упругая изотропная полуплоскость; на нее действует сосредоточенная сила. Необходимо найти напряженно-деформированное состояние от действия сосредоточенной силы в упругой полуплоскости (т.е. найти тензор напряжений: , , ).

Решение этой задачи сводится к нахождению функции Эри, т.е. к решению бигармонического уравнения, а затем находим напряжение.

y

 

 
 


P

x

 

E

ν

 

Если вырежем прямоугольник, то x,y – координаты, в которых нужно найти напряжение :

Имеем прямоугольник:

усилие

(G – модуль сдвига)

 

(поворот, угол)

Следовательно:

; ; ;

u, v – компоненты вектора перемещений.

Перемещение: u – вдоль x, u – вдоль y. Если задача пространственная, то еще w – по z.

Рассмотрим:

Компоненты перемещений:

;

осадка:

(*)

где: – модуль сдвига

E – модуль Юнга

x,y – координаты;

ν – коэффициент Пуассона;

L – произвольная постоянная, определенная для закрепления полуплоскости путем исключения ее движения (т.е. uy=0 при x=L, y=0)

 
 

 


y

L

 

P

т.е. здесь y=0 x

(нет осадка

поверхности)

 

Измеряем uy относительно смещения произвольной точки границы полуплоскости. Если положим y=0, то из формулы (*) получим следующую зависимость:

; (при y=0)

РАСПРЕДЕЛЯЕМАЯ НАГРУЗКА НА УПРУГУЮ ПОЛУПЛОСКОСТЬ

Рассмотрим упругую полуплоскость, на которую действует определенная нагрузка:

 
 


y

       
 
 
   

 

 


x

x=b1 x=b2

x=ξ

Граничные условия:

Результирующая сила P(ξ)=Py(ξ)dξ. И так по всей поверхности.

В случае распределенной нагрузки на границе при произвольном законе, общее перемещение границы поверхности упругой полуплоскости может быть найдено, используя уравнение для перемещения (*) для сосредоточенной силы ее затем это уравнение интегрируем от b1 до b2.

(**)

(Здесь замена x→x-ξ; P→P(ξ)dξ – сосредоточенная сила)

Т.о. определяется перемещение всей упругой полуплоскости.

Величины ux, и т.д. можно найти аналогично, сделав те же замены (см. выше).








Дата добавления: 2015-04-19; просмотров: 508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия