Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенной силы на упругую полуплоскость Определение напряженного состояния. Задача Фламана





УПРУГОЕ РАВНОВЕСИЕ ПОЛУПЛОСКОСТИ И НАХОЖДЕНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ С ПОМОЩЬЮ ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Рассмотрим плоскую статическую задачу для упругой полуплоскости, нагруженную по контуру. Считаем, что тело в декартовой системе координат занимает область ,т.е.

y

 

       
   
 
 

 


f(x)

 

0 x

П изотропная

упругая

полуплоскость

 

 

Нужно найти напряженное состояние в любой точке.

Задача состоит в интегрировании системы дифференциальных уравнений для напряжений .

Из классической теории упругости известно, что эти напряжения должны удовлетворять системе уравнений равновесия:

(1)

 

При этом должны выполняться условия непрерывности:

(2),

где - оператор Лапласа.

Зададим на поверхности этой полуплоскости граничные условия:

(3)

где f(x) - усилие; q(x) - касательное усилие.

Известно, что эти напряжения должны удовлетворять (1), (2), (3).

Решается методом Фурье.

Предположим, что на бесконечности эти напряжения стремятся к 0 вместе со своими производными. Для того чтобы,облегчить решение этой задачи, введем преобразование Фурье от напряжений по известным формулам:

(4)

Будем иметь дело с изображениями .

Умножим уравнение (1), (2) на и интегрируя по х на интервале получим систему равенств, которые после интегрирования по частям превращаются в систему обыкновенных дифференциальных уравнений относительно величин .

Имеем:

(5)

(5) - система обыкновенных дифференциальных уравнений.

При этом (5) должно удовлетворять граничным условиям:

(6)

Предположим, что преобразование Фурье для заданной граничной функции всегда существует.

Тогда из (5) можем найти:

(7)

Подставляя в третье уравнение системы (5) (7) получаем уравнение четвертого порядка:

(8)

Учитывая, что на бесконечности стремится к нулю решение ищем в виде:

Найдем постоянные A() и В().Для этого подставим граничные условия и найдем А и В:

Подставим А и В в ,следовательно получим решение:

Напишем чему будет равно напряжение в преобразованиях:

 

Для упрощения решения может быть использовано преобразование Фурье. Окончательное решение поставленной задачи может быть получено с помощью формулы обращения Фурье.

Например, для напряжения :

 

(подставили вместо f и g их значения).

Предположим, что допустима перестановка порядка интегрирования, тогда получаем:

где f - нормальная нагрузка, g - касательная нагрузка.

После нахождения квадратур будем иметь следующее:

Аналогично получаем формулы для других напряжений:

Таким образом получено в однократных квадратурах точное решение простой задачи для случая произвольного внешнего загружения. Решение удовлетворяет всем условиям задачи.







Дата добавления: 2015-04-19; просмотров: 1346. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия