Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенной силы на упругую полуплоскость Определение напряженного состояния. Задача Фламана





УПРУГОЕ РАВНОВЕСИЕ ПОЛУПЛОСКОСТИ И НАХОЖДЕНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ С ПОМОЩЬЮ ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Рассмотрим плоскую статическую задачу для упругой полуплоскости, нагруженную по контуру. Считаем, что тело в декартовой системе координат занимает область ,т.е.

y

 

       
   
 
 

 


f(x)

 

0 x

П изотропная

упругая

полуплоскость

 

 

Нужно найти напряженное состояние в любой точке.

Задача состоит в интегрировании системы дифференциальных уравнений для напряжений .

Из классической теории упругости известно, что эти напряжения должны удовлетворять системе уравнений равновесия:

(1)

 

При этом должны выполняться условия непрерывности:

(2),

где - оператор Лапласа.

Зададим на поверхности этой полуплоскости граничные условия:

(3)

где f(x) - усилие; q(x) - касательное усилие.

Известно, что эти напряжения должны удовлетворять (1), (2), (3).

Решается методом Фурье.

Предположим, что на бесконечности эти напряжения стремятся к 0 вместе со своими производными. Для того чтобы,облегчить решение этой задачи, введем преобразование Фурье от напряжений по известным формулам:

(4)

Будем иметь дело с изображениями .

Умножим уравнение (1), (2) на и интегрируя по х на интервале получим систему равенств, которые после интегрирования по частям превращаются в систему обыкновенных дифференциальных уравнений относительно величин .

Имеем:

(5)

(5) - система обыкновенных дифференциальных уравнений.

При этом (5) должно удовлетворять граничным условиям:

(6)

Предположим, что преобразование Фурье для заданной граничной функции всегда существует.

Тогда из (5) можем найти:

(7)

Подставляя в третье уравнение системы (5) (7) получаем уравнение четвертого порядка:

(8)

Учитывая, что на бесконечности стремится к нулю решение ищем в виде:

Найдем постоянные A() и В().Для этого подставим граничные условия и найдем А и В:

Подставим А и В в ,следовательно получим решение:

Напишем чему будет равно напряжение в преобразованиях:

 

Для упрощения решения может быть использовано преобразование Фурье. Окончательное решение поставленной задачи может быть получено с помощью формулы обращения Фурье.

Например, для напряжения :

 

(подставили вместо f и g их значения).

Предположим, что допустима перестановка порядка интегрирования, тогда получаем:

где f - нормальная нагрузка, g - касательная нагрузка.

После нахождения квадратур будем иметь следующее:

Аналогично получаем формулы для других напряжений:

Таким образом получено в однократных квадратурах точное решение простой задачи для случая произвольного внешнего загружения. Решение удовлетворяет всем условиям задачи.







Дата добавления: 2015-04-19; просмотров: 1346. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия