где K(λ,x) — заданная функция х и параметра λ, называемая ядром интегрального преобразования. При конечных пределах интегрирования (6.4) называют конечным интегральным преобразованием. В приложениях часто а=0, b=∞ или а= —∞, b=∞;. Исходная задача приводится к задаче для так называемой трансформанты неизвестной функции . Ее, очевидно, решить проще, чем для искомой функции. Следовательно, сначала получается вспомогательное решение в форме . Из этого решения после выполнения обратного преобразования следует искомое решение для f(x). При этом обратное преобразование сводится в общем случае к решению интегральных уравнений, которое может быть получено точными или чаще всего приближенными численными методами.
В зависимости от типа ядра существуют различные интегральные преобразования, например преобразование Лапласа экспоненциальное преобразование Фурье преобразование Меллина преобразование Ханкеля или Бесселя
причем означает функцию Бесселя первого рода n-го порядка. Для решения задач теории упругости наиболее важны три последних преобразования.