Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенных сил на упругое полупространство. Задача Черрути





Пусть плоскость z = 0 является гранью полубесконечного сплошного тела пусть на эту плоскость действует сосредоточенная сила Р по оси z (рис. 22). В литературе эта задача име­нуется задачей Буссинеска.

Окончательно формулы для напряжений примут вид:

Для определения перемещений используем уравнения (2.2). Компо­нента смещения вдоль радиуса r

. (2.43)

После подстановки в (2.43) выражений (2.42) и преобразо­ваний получаем

.

При l = ¥;, как и следует ожидать, и == 0. На основании этого

,

откуда

. (2.44)

После подстановки в (2.44) выражений (2.42) и интегриро­вания, принимая также, что wr=¥ = 0, получаем:

.

Для вертикальных перемещений точек на граничной плоскости z = 0 для так называемой “дневной поверхности” получим выражение:

.

Пусть на поверхности z = 0 полупространства в начале ко­ординат приложена сосредоточенная сила Q в направлении оси х согласно рис. 9.6 (в остальном поверхность свободна от нагрузки).

 

Рис. 9.6. Сосредоточенная сила, касательная к границе полупространства (задача Черрути).

 

В рассматриваемом случае задача уже не является осесимметричной. Решение, однако, можно получить аналогично тому, как это делалось для задачи Буссинеска, комбинированием по­тенциала деформаций Ламе

и вектора Буссинеска с компонентами

причем А, В и С — произвольные постоянные (имеющие другие значения, нежели приведенные в предыдущем разделе). При­меним соотношения, указанные в п. 5.1.2 и 5.1.З. Из (5.10) и (5.21) получаются выражения для перемещений

и т.д.,

а (5.12) и (5.24) для напряжений

и т.д.

Постоянные А, В, С определяются из граничных условий при z = 0, а также из условия равновесия (каса­тельных сил внаправлении оси х на плоскости z=const и силы Q) и будут равны

В результате получаем формулы в декартовых координатах для компонент перемещений

 

и напряжений

 








Дата добавления: 2015-04-19; просмотров: 799. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия