Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенных сил на упругое полупространство. Определение перемещений. Нахождение напряжений





Пусть плоскость z = 0 является гранью полубесконечного сплошного тела пусть на эту плоскость действует сосредоточенная сила Р по оси z (рис. 22). В литературе эта задача име­нуется задачей Буссинеска.

рис. 22

Для радиального напряжения можно принять в качестве первой попытки

.

Переходя к цилиндрическим координатам, по формулам перехода должны получить

.

Заменяя , имеем:

(2.39)

. (2.40)

Для определения коэф­фициента k составим уравнение равновесия по какому-либо горизонтальному сечению z = a. Для элементарной площадки в виде бесконечно тонкого кольца шириной dr и радиуса r имеем элементарную внут­реннюю силу

.

Со всех таких элементарных площадок, т. е. со всего сечения z = a, имеем сумму внутренних усилий

. (2.41)

Так как , то, дифференцируя, имеем 2ldl = 2rdr. Таким образом, (2.41) перепишется:

.

Уравнение равновесия по сечению z = а (сумма проекций на ось z) приводит к выражению

,

откуда .

То, что выражения (2.39) и (2.40) дают точное решение задачи, можно доказать путем использования функции на­пряжений. Выполнение этой операции позволит определить нам также и другие компоненты напряжений (sq, sr).

На основании (2.13, 2.14, 2.15)

.

Окончательно формулы для напряжений примут вид:

. (2.42)

 

Для определения перемещений используем уравнения (2.2). Компо­нента смещения вдоль радиуса r

. (2.43)

После подстановки в (2.43) выражений (2.42) и преобразо­ваний получаем

.

При l = ¥;, как и следует ожидать, и == 0. На основании этого

,

откуда

. (2.44)

После подстановки в (2.44) выражений (2.42) и интегриро­вания, принимая также, что wr=¥ = 0, получаем:

.

Для вертикальных перемещений точек на граничной плоскости z = 0 для так называемой “дневной поверхности” получим выражение:

. (2.45)

У начала координат, как это было и в плоской задаче, перемещения и напряжения становятся бесконечно боль­шими, и потому, необхо­димо представить, что у начала координат в области пла­стических деформаций материал вырезан полусферической поверхностью малого радиуса, а сосредоточенная сила Р заменена статически эквивалентными усилиями, распределен­ными по этой поверхности.

  Полное напряжение в любой точке горизонтальной площадки (т.е. равнодействующая напряжений sz и trz на рис. 23) . Если, далее, очертить произволь­ным диаметром d сферу, касающуюся граничной плоскости в той же точ­ке O, то по всем горизонтальным площадкам, размещенным на поверх­ности этой сферы, полные напря­жения







Дата добавления: 2015-04-19; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия