Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Фурье





Пусть функция f(x) задана на действительной оси, удовлетворяет условиям Дирихле и абсолютно интегрируема. Имеет место интегральная формула Фурье

f (x)= (4.1)

Для точек разрыва f (x) в (4.1) заменяется на . Перепишем (4.1) в комплексной записи:

f (x)= (4.2)

Функцию

(4.3)

называют трансформантой (преобразованием Фурье) функции f (). Вместо здесь можно писать x. Подставим (4.3) в (4.2), получим формулу

f (x)= , (4.4)

которая, даёт обратное преобразование Фурье или восстановление оригинала по трансформанте, справедливое при любом .

Пусть теперь имеются две функции f (x) и g (x), преобразование Фурье которых и . Рассмотрим интеграл

. (4.5)

Он называется свёрткой этих функций и обозначается f . Осуществим обратное преобразование (см. (4.4)) этого интеграла для функции g (x - :

;

Это показывает, что произведение (*) является преобразованием Фурье от свёртки.

Отметим частные случаи преобразования Фурье, когда исходная функция задаётся на положительной части вещественной оси. В этом случае вводятся косинус - и синус -преобразования Фурье:

, f (x)= , (4.5’)

, . (4.5’’)

Преобразование Фурье распространяется на случай многих переменных. Пусть функция f ( классу функций, суммируемых во всём пространстве. Тогда n-мерным преобразованием Фурье называется интеграл

.







Дата добавления: 2015-04-19; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия