Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Фурье





Пусть функция f(x) задана на действительной оси, удовлетворяет условиям Дирихле и абсолютно интегрируема. Имеет место интегральная формула Фурье

f (x)= (4.1)

Для точек разрыва f (x) в (4.1) заменяется на . Перепишем (4.1) в комплексной записи:

f (x)= (4.2)

Функцию

(4.3)

называют трансформантой (преобразованием Фурье) функции f (). Вместо здесь можно писать x. Подставим (4.3) в (4.2), получим формулу

f (x)= , (4.4)

которая, даёт обратное преобразование Фурье или восстановление оригинала по трансформанте, справедливое при любом .

Пусть теперь имеются две функции f (x) и g (x), преобразование Фурье которых и . Рассмотрим интеграл

. (4.5)

Он называется свёрткой этих функций и обозначается f . Осуществим обратное преобразование (см. (4.4)) этого интеграла для функции g (x - :

;

Это показывает, что произведение (*) является преобразованием Фурье от свёртки.

Отметим частные случаи преобразования Фурье, когда исходная функция задаётся на положительной части вещественной оси. В этом случае вводятся косинус - и синус -преобразования Фурье:

, f (x)= , (4.5’)

, . (4.5’’)

Преобразование Фурье распространяется на случай многих переменных. Пусть функция f ( классу функций, суммируемых во всём пространстве. Тогда n-мерным преобразованием Фурье называется интеграл

.







Дата добавления: 2015-04-19; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия