Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенных сил на упругое полупространство. Задача Буссинеска





Пусть плоскость z = 0 является гранью полубесконечного сплошного тела пусть на эту плоскость действует сосредоточенная сила Р по оси z (рис. 22). В литературе эта задача име­нуется задачей Буссинеска.

Окончательно формулы для напряжений примут вид:

Для определения перемещений используем уравнения (2.2). Компо­нента смещения вдоль радиуса r

. (2.43)

После подстановки в (2.43) выражений (2.42) и преобразо­ваний получаем

.

При l = ¥;, как и следует ожидать, и == 0. На основании этого

,

откуда

. (2.44)

После подстановки в (2.44) выражений (2.42) и интегриро­вания, принимая также, что wr=¥ = 0, получаем:

.

Для вертикальных перемещений точек на граничной плоскости z = 0 для так называемой “дневной поверхности” получим выражение:

.

Задача Буссинеска. Пусть на поверхности полубесконечного упругого тела с плоской границей z =0 (так называемое полупространство) действует в начале координат нормальная сосредоточенная сила (рис. 9.4). Речь идет об осесимметричиой задаче. На бес­конечности напряжения должны обращаться внуль. Решение удается получить с помощью формул Буссинеска (см. п. 5.1.6) при использовании гармонических функций. Согласно (5.52), имеем

где

Компоненты перемещений и напряжений в декартовых координатах для задачи Буссинеск выражаются в виде








Дата добавления: 2015-04-19; просмотров: 1171. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия