Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действие сосредоточенной силы на упругую полуплоскость. Применения преобразований Фурье





Рассмотрим плоскую статическую задачу для упругой полуплоскости, нагруженную по контуру. Считаем, что тело в декартовой системе координат занимает область ,т.е.

y

 

       
   
 
 

 


f(x)

 

0 x

П изотропная

упругая

полуплоскость

 

Нужно найти напряженное состояние в любой точке.

Задача состоит в интегрировании системы дифференциальных уравнений для напряжений .

Из классической теории упругости известно, что эти напряжения должны удовлетворять системе уравнений равновесия:

(1)

 

При этом должны выполняться условия непрерывности:

(2),

где - оператор Лапласа.

Зададим на поверхности этой полуплоскости граничные условия:

(3)

где f(x) - усилие; q(x) - касательное усилие.

Известно, что эти напряжения должны удовлетворять (1), (2), (3).

Решается методом Фурье.

Предположим, что на бесконечности эти напряжения стремятся к 0 вместе со своими производными. Для того чтобы,облегчить решение этой задачи, введем преобразование Фурье от напряжений по известным формулам:

(4)

Будем иметь дело с изображениями .

Умножим уравнение (1), (2) на и интегрируя по х на интервале получим систему равенств, которые после интегрирования по частям превращаются в систему обыкновенных дифференциальных уравнений относительно величин .

Имеем:

(5)

(5) - система обыкновенных дифференциальных уравнений.

При этом (5) должно удовлетворять граничным условиям:

(6)

Предположим, что преобразование Фурье для заданной граничной функции всегда существует.

Тогда из (5) можем найти:

(7)

Подставляя в третье уравнение системы (5) (7) получаем уравнение четвертого порядка:

(8)

Учитывая, что на бесконечности стремится к нулю решение ищем в виде:

Найдем постоянные A() и В().Для этого подставим граничные условия и найдем А и В:

Подставим А и В в ,следовательно получим решение:

Напишем чему будет равно напряжение в преобразованиях:

 

Для упрощения решения может быть использовано преобразование Фурье. Окончательное решение поставленной задачи может быть получено с помощью формулы обращения Фурье.

Например, для напряжения :

 

(подставили вместо f и g их значения).

Предположим, что допустима перестановка порядка интегрирования, тогда получаем:

где f - нормальная нагрузка, g - касательная нагрузка.

После нахождения квадратур будем иметь следующее:

Аналогично получаем формулы для других напряжений:

Таким образом получено в однократных квадратурах точное решение простой задачи для случая произвольного внешнего загружения. Решение удовлетворяет всем условиям задачи.








Дата добавления: 2015-04-19; просмотров: 463. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия