Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения задач вдавливания жесткого штампа в упругую полуплоскость





Рассмотрим упругую полуплоскость с постоянными: E –модуль упругости, - коэффициент Пуассона.

Пусть в эту полуплоскость вдавливается штамп под силой P. Длина штампа 2b. Происходит деформация (штамп плоский).

Запишем граничные условия:

Отсутствует трение между штампом и полуплоскостью. Если бы было трение, то , k-коэффициент трения.

Эта задача решается:

- численный метод решения.

Рассмотрим дискретную аппроксимацию напряжений, непрерывно распределенных на границе. Представим ее с помощью N-граничных элементов, одинаковых на участке . Считаем, что для малых элементов нормальное напряжение постоянно в каждом элементе.

Пусть это напряжение Tyj в j-м элементе (y означает, что действует по нормали). Численное решение задачи сводится к нахождению значений напряжений Tyj таких, что для всех j, при которых смещение в центре каждого элемента будет =–u0. Давление P неизвестно и после разбиения на отрезки, на каждом элементе будет свое давление – постоянное.

Перемещение произвольной точки граничной полуплоскости под действием Py для каждого элемента будет определятся по ранее приведенным формулам под действием постоянной нагрузки.

Ранее:

;

Здесь 2а-длина элемента, L-точка на поверхности полуплоскости, где перемещения=0.

Разбиваем участок на N-граничных элементов, длиной 2а каждый. Координаты xцентров i-го и j-го элеменотов xi, xj.

Если нагрузка постоянная и действует на площадке 2а с центром в точке xj, тогда перемещение будет равно:

;

Перемещение i-го элемента, вызванного действием постоянной нагрузки в j-м элементе будет определятся при x=xi. Перемещение uy в центре i-го элемента возникает от действия постоянной нагрузки во всех N элементах путем суперпозиции.

,

где Bij определяется по формуле:

;

Bij – коэффициенты влияния смещения в центре i-го элемента (и возник. От действия постоянной единичной нагрузки на j-м элементе). Численное решение задачи о штампе дается системой линейных уравнений с N –неизвестными:

, i=1,2,3,…,N

Находим постоянное давление Tyj, решая эту систему.

Решая СЛАУ при заданном u0 находим неизвестные компоненты давления Tyj, затем строим график изменения давления на всем участке.

, .

-аналитический метод решения.

Ранее

.

(**)








Дата добавления: 2015-04-19; просмотров: 829. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия