Актуальность создания интеллектуальных мобильных роботов
Автономные интеллектуальные мобильные роботы предназначены для автоматической работы в заранее неопределенных условиях внешней среды. Они могут применяться в различных областях человеческой деятельности и могут решать различные задачи. Например, доставлять грузы, перемещать различные предметы, производить разведку, производить какую-либо технологическую операцию на большом пространстве (например, уборку помещения) и т.п. Подобные системы готовы заменить человека при выполнении сложных технологических операциях, связанных с повышенным риском или с работой в экстремальных средах, например, в условиях повышенной радиации, давлении или безвоздушном пространстве, а также заменить человеческий труд на непопулярных профессиях. 5. Обучение и самообучение (machine learning). Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов. В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining — анализа данных и knowledge discovery — поиска закономерностей в базах данных. 6. Распознавание образов (pattern recognition). Традиционно — одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время практически выделившееся в самостоятельную науку. Ее основной подход — описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой. 7. Новые архитектуры компьютеров (new hardware platforms and architectures). Самые современные процессоры сегодня основаны на традиционной последовательной архитектуре фон Неймана, используемой еще в компьютерах первых поколений. Эта архитектура крайне неэффективна для символьной обработки. Поэтому усилия многих научных коллективов и фирм уже десятки лет нацелены на разработку аппаратных архитектур, предназначенных для обработки символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных, параллельным и векторным компьютерам. И хотя удачные промышленные решения существуют, высокая стоимость, недостаточное программное оснащение и аппаратная несовместимость с традиционными компьютерами существенно тормозят широкое использование новых архитектур. 8. Игры и машинное творчество. Это, ставшее скорее историческим, направление связано с тем, что на заре исследований ИИ традиционно включал в себя игровые интеллектуальные задачи — шахматы, шашки, …. В основе первых программ лежит один из ранних подходов — лабиринтная модель мышления плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми. Кроме того, это направление охватывает сочинение компьютером музыки, стихов, сказок и даже афоризмов. Основным методом подобного «творчества» является метод пермутаций (перестановок) плюс использование некоторых баз знаний и данных, содержащих результаты исследований по структурам текстов, рифм, сценариям и т. п. 9. Другие направления. · генетические алгоритмы; · когнитивное моделирование; · интеллектуальные интерфейсы; · распознавание и синтез речи; · дедуктивные модели.
|