Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предикаты и операции над ними





Исчисление предикатов – исчисление, в котором наряду с формулами исчисления высказываний используется формулы, в которые могут входить отношения (предикаты), связывающие между собой группы элементов исчисления и кванторы общности и существования.

Исчисления предикатов, в которых под знаком квантора не могут находится символы предикатов называется исчисление предикатов 1 порядка.

Предикат (высказывательная функция) - логическое сказуемое.

Предикат – специальный знак, отражающий определенное отношение между конечным множеством сущностей-аргументов.

Пусть М - непустое множество (предметное множество).

Тогда n -местным предикатом, заданным на М, называется выражение, содержащее n переменных и образующееся в высказывание при замене этих переменных элементами множества М.

Пример: Пусть М есть множество натуральных чисел N, тогда выражения «Х -простое число», «X -четное число», «Х -больше 10» являются одноместными предикатами.

При подстановке вместо X натуральных чисел получаются высказывания «2-простое число», «5 больше 10» и так далее.

Выражение «x больше y», «x + y =10» является двухместным предикатом.

Выражение «x лежит между y и z» является трехместным предикатом.

Высказывание - нульместный предикат, или предикат, в котором нет переменных для замены.

Предикат с заменяемыми переменными x 1,.., xn будет обычно указываться заглавной буквой латинской буквой, после которой в скобках указываются эти переменные.

Пример: P (x 1, x 2)

Среди переменных в скобках могут быть и фиктивные

Пример: На множестве имен индивидов, университета и специальностей заданы высказывательные функции (предикаты).

Р 1(Х)= «х -студент».

Р 2(Х,БГТУ)= «студент х университета БГТУ».

Р 3(x, y,САПР)= «студент х университета y обучается по специальности САПР».

X, Y - предметные переменные.

БГТУ и САПР – постоянные

На совокупности всех предикатов, заданных на множестве М, вводятся операции конъюнкции, дизъюнкции, отрицания, импликации, эквиваленции.

В логике предикатов I порядка вводится 2 новые операции:

- квантор общности ;

- квантор существования ().

Предикат W (x 1,.., xn) называется конъюнкцией предикатов U (x 1,.., xn) и V (x 1,.., xn), заданных на множестве М, если для любых a 1,.., an из М высказываний W (a 1,.., an) есть конъюнкция высказываний U (a 1,.., an) и V (a 1,.., an).

Пример: «Существует х такой, что x + y =10» На множестве натуральных чисел это предположение определяется одноместным предикатом P (y). Так Р (2) и Р (9) истинные высказывания, Р (11) ложное.

Если обозначить «x + y =10» через S (x,y) то Р (y) «существует x такой, что S (x,y)». Предикат Р (у) получаем из S (x,y) навешиванием квантора существования на x и пишут P (Y)=( x) S (x,y).

Пусть P (x 1,…, xn) – предикаты, заданные на множестве М, у переменная.

Тогда:

-выражение «для каждого у выполняется Р (х 1,…, xn)» - предикат, полученный из Р навешиванием квантора общности на переменную у.

-выражение «существует у такой, что выполняется Р (х 1,…, xn)» - предикат полученный из Р навешиванием квантора существования на переменную y.

Высказывание xP (x) означает, что область истинности предиката P (x) совпадает с областью значение переменой х. Высказывание ( x) Р (х) означает, что область истинности предиката Р (х) не пустая.








Дата добавления: 2015-04-19; просмотров: 1143. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия