Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о полноте метода резолюций





Множество дизъюнктов в логике высказываний S невыполнимо тогда и только тогда, когда из S выводим пустой дизъюнкт.

Доказать с помощью метода резолюций, что формула G является логическим следствием множества формул F 1,…, Fk

1. Составляем множество формул T ={ F 1,…, Fk, G }.

2. Каждую из этих формул приводим к КНФ и в полученных формулах зачеркиваются знаки конъюнкции (). Получается множество дизъюнктов S.

3. Имеется вывод пустого дизъюнкта из S. Если пустой дизъюнкт выводим из S, то формула G является логическим следствием формул F 1,…, Fk. Если из S нельзя вывести пустой дизъюнкт, то G не является логическим следствием формул F 1,…, Fk.

Пример: доказать что формула G = Z является логическим следствием формул

F 1= X YX Z; F2= YZ

1: T ={ F 1, F 2, G }

2: F 1 равносильна X (Y Z)

F 2 равносильна (Y Z)

Тогда множество дизъюнктов S ={ X, Y Z, Y Z, Z }

3: Y Z, Z, Y, Y Z, Y, (из множества S выводим пустой дизъюнкт)

Следовательно формула G является логическим следствием формул F 1 и F 2.

 


Пример: доказать истинность заключения

(A→B) (C→D); (D B → M); M

(A C)

Посылки (в КНФ)

F1=(A→B) (C→D)=(A B) (C D)

F2=(D B→M)=(D B) M=(D B M)

F3=M

Отрицание заключения в КНФ: G=(A C)=A C

Множество дизъюнктов

S={A;C;M;(A B);(C D);(D B M}

Вывод (резольвенты)

D1=A (A B)=B

D2=B (D B M)=(D M)

D3=(D M) (C D)=(C M)

D4=(C M) M=C

D5=C C=

Истинность значения (A C) доказана.

 







Дата добавления: 2015-04-19; просмотров: 1407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия