Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Подстановка и унификация в логике предикатов 1-го порядка. Алгоритм нахождения наиболее общего унификатора





Подстановка и унификация

Подстановкой называется множество равенств = {x1 = t1, x2 = t2, … xn = tn}

где x1, x2 … xn – различные переменные

t1, t2 … tn – термы, причём терм ti не содержит переменной xi

если = {x1 = t1, x2 = t2 … xn = tn}, F – дизъюнкт, то через (F) будем обозначать дизъюнкт, полученный из F одновременной заменой x1 на t1 и т.д. xn на tn

Ех: = {x1 = f(x2), x2 = c}

Пустая подстановка – подстановка, не содержащая равенств.

Унификация - подбор такой подстановки, которая позволит сделать несколько литералов идентичными.

Пусть {E1, …, Ek} – множество литералов или множество термов. Подстановка называется унификатором этого множества,

если (E1) = (E2) = … = (Ek)

Множество унифицируемо, если существует унификатор этого множества.

Ех: множество атомов функционирования {Q (a, x, f(x)), Q(u, y, z)}

Унифицируемо подстановкой {u = a, y = x, z = f(x)}

Результат унификации: {Q(a, x, f(x)), Q(a, x, f(x))}

Ех2: множество {R(x, f(x)), R(u, u)} не унифицируемо, если заменить x на u получим {R(u, f(u)), R(u, u)} нельзя проводить замену u = f(u), т.к. тогда получим

R(f(u), f(f(u))) и R(f(u), f(u)).

Если множество унифицируемо, то существует, как правило, не один унификатор этого множества, а несколько. Среди всех унификаторов данного множества выделяют наиболее общий унификатор.

Пусть имеется две подстановки:

= {x1 = t1, x2 = t2 … xk = tk}

= {y1 = s1, y2 = s2 … ye = se}

Тогда произведением подстановок и называется подстановка, которая получается из последовательных равенств

{x1 = (t1), x2 = (t2), … xk = (tk), y1 = s1, y2 = s2, ye = se} вычёркиваем равенства вида xi = xi для 1 i k, yi = si, если yi {x1, …, xk}, для 1 j l.

Произведением (композицией) подстановок и называется подстановка, которая получается путём применения подстановки к термам подстановки с добавлением из всех подстановочных пар, содержащих переменные, отсутствующее в .

Ех: = {z = f(x, y)}

= {x = a, y = b, w = c, z = d}

Последовательность равенств из определения произведения имеет вид:

= {z = f(x, y), x = a, y = b, w = c} = {z = f (a, b), x = a, y = b, w = c}.

Унификатор множества литералов или термов называется наиболее общим унификатором этого множества, если для любого унификатора того же множества литералов существует подстановка такая, что =

Ех: {P(x, f(a), g(z), P(f(b, y, v)))}

Наиболее общим унификатором является подстановка = {x = f(b), y = f(a), v = g(z)}

Если в качестве взять унификатор {x = f(b), y = f(a), z = c, v = g(c)},

то = {z = c}

Если М – множество литералов или термов. Выдадим первую слева позицию, в которой не для всех литералов стоит один и тот же символ. Затем в каждом литерале выпишем выражение, которое начинается символом, занимающим эту позицию (этим выражением может быть сам литерал, атомная формула или терм), множество полученных выражений называется множеством рассогласований в М.

Ех: если M = {P(x, f(y), a), P(x, u, g(y)), P(x, c, v)}, множество рассогласованностей состоит из термов f(y), u, c

Множество рассогласованностей {P(x, y), P(a, g(z))} есть само множество

Если M = { P(x, y), Q(a, v)}, то множество рассогласованностей равно

{P(x, y), Q(a, v)}

Алгоритм нахождения наиболее общего унификатора.

Шаг 1. k = 0, M k= M, k = , где - пустая подстановка

Шаг 2. Если множество M k состоит из одного литерала (содержит 1 элемент), то выдать k в качестве наиболее общего унификатора и завершить работу. В противном случае найти множество N k рассогласованностей в M k.

Шаг 3. Если в множестве N k существует переменная vk и терм tk, не содержащий vk, то перейти к шагу 4, иначе выдать сообщение о том, что множество М не унифицируемо и завершить работу.

Шаг 4. Положить k+1 = {vk = tk} k, т.е. подстановка k+1 получается из k заменой vk на tk и, возможно добавлением равенства vk = tk.

В множестве M k выполнить замену vk = tk, полученное множество литералов взять в качестве M k+1

Шаг 5. Присвоить k = k + 1 и перейти к шагу 2.








Дата добавления: 2015-04-19; просмотров: 2140. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия