Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм метода резолюций для проверки невыполнимости множества дизъюнктов в логике высказываний





Резольвента – разрешающее уравнение, разрешающая функция, разрешающие операторы.

Правилом резолюций в логике предикатов называется правило из дизъюнктов P (t 1, …, tn) F и P (s 1, …, sn) G, выводим дизъюнкт (F) (G), где – наибольший общий унификатор множества { P (t 1, …, t n); P (s 1, …, sn)}.

Дизъюнкт (F) (G) называется бинарной резольвентой первых двух дизъюнктов, а литералы P (t 1, …, tn) и P (s 1, …, sn) – отрезаемыми литералами.

Пример: Из дизъюнктов Q (a, f (x)) R (x) и Q (u, z) P (z)

можно выделить дизъюнкт – бинарную резольвенту исходных дизъюнктов

R (x) P (f (x))

используя подстановку = { u = a; z = f (x)}.

Правилом склейки в логике предикатов называется правило из дизъюнкта ◊ P (t 1, …, tn) P (s 1, …, sn) F выводим дизъюнкт = (◊ P (t 1, …, tn)) (F),

где - наиболее общий унификатор множества { P (t 1, …, tn), …, P (s 1, …, sn)},

◊ - знак отрицания или его отсутствие.

Дизъюнкт = (◊ P (t 1, …, tn)) (F) называется склейкой первого дизъюнкта.

Пример: Правило склейки, применённое к дизъюнкту:

P (x, y) P (y, x) P (a, a) Q (x, y, v)

даёт дизъюнкт P (a, a) Q (a, a, v)

P (x, y) P (y, x) P (a, a) Q (x, y, v)

= { x = a, y = a } – НОУ

(P (x, y)) = P (a, a);

(Q (x, y, v)) = Q (a, a, v).

Резольвентой дизъюнктов D 1 и D 2 называется одна из следующих бинарных резольвент:

- бинарная резольвента дизъюнктов D 1 и D 2;

- бинарная резольвента склейки D 1 и дизъюнкта D 2;

- бинарная резольвента дизъюнкта D 1 и склейки D 2;

- бинарная резольвента склейки D 1 и склейки D 2.

Определение вывода в логике предикатов

Пусть S – множество дизъюнктов. Выводом из множества дизъюнктов S называется последовательность дизъюнктов D 1, D 2, …, D n, такая, что каждый дизъюнкт D i принадлежит S, выводим из предыдущих дизъюнктов по правилу резолюций или выводим из предыдущего по правилу склейки.

Пример: S = { B(x) C(x) T(f(x)), C(y) T(f(z)), B(a)}

Вывод из S – последовательность дизъюнктов:

D 1 = B(x) C(x) T(f(x)) - S

D 2 = C(y) T(f(z)) - S

D 3 = B(x) T(f(x)) T(f(z)) – из D 1 и D 2 по правилу резолюций

D 4 = B(x) T(f(x)) – из D 3 по правилу склейки

D 5 = B(a) S

D 6 = T (f (a)) из D 4 и D 5 по правилу резолюций

Пример вывода по правилу резолюций

D 1 = B(x) (C(x)) T(f(x)) - S

D 2 = C(y) T(f(z)) - S

= {y = x}

D 3 = B(x) T(f(x)) T(f(z)) – из D 1 и D 2 по правилу резолюций

 

Пример: по правилу склейки

D 3 = B(x) T(f(x)) T(f(z))

= {z = x}

D 4 = B(x) T(f(x)) из D 3 по правилу склейки

Теорема о полноте: Множество дизъюнктов S логики первого порядка невыполнимо тогда и только тогда, когда из S выводим пустой дизъюнкт ().

Имеется множество гипотез (формул) {F1, …, Fk}. Доказать, что формула G – логическое заключения множества гипотез. {F1, …, Fk} G

Для доказательства этого также применяется метод резолюций.








Дата добавления: 2015-04-19; просмотров: 1772. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия