Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение и примеры гладких многообразий





(лечение согласно соответствующих протоколов)

Дифтерийная кардиопатия, миокардит, токсическая полинейропатия, метаболическая энцефалопатия, отек головного мозга, токсический нефрозонефрит, иммунокомплексный нефрит, острая почечная недостаточность, ИТШ, ДВС-синдром, сердечно-сосудистая недостаточность, дыхательная недостаточность, полиорганнная недостаточность.

Неспецифические осложнения: паратонзиллярный абсцесс, отит, пневмония.

Определение и примеры гладких многообразий.

Широкими классами примеров гладких многообразий являются линии и поверхности в 3-мерном евклидовом пространстве. Эти объекты классической дифференциальной геометрии послужили основной мотивацией для введения абстрактного определения гладкого многообразия. Более точным языком, они являются одномерными (линии) и двумерными (поверхности) вложенными подмногообразиями евклидова пространства .

 

Основная идея – построить такие многомерные объекты, которые локально допускают координатное описание (т.е. локально евклидовы). Перейдем к формальному определению.

Будем предполагать далее, что - хаусдорфово топологическое пространство со счетной базой.

Определение 1. Локальной картой на называется пара , где - открытое подмножество в , - гомеоморфизм. В этом случае имеем:

существует единственный набор , который называется локальными координатами точки относительно локальной карты .

Определение 2. Пусть и - локальные карты на . Они называются согласованными (гладко склеенными), если:

- либо Æ;

- либо, если Æ, то отображения

являются гладкими.

Гладкость указанных отображений понимается в следующем смысле:

.

Определение 3. Атласом на называется набор локальных карт , обладающий свойствами:

  1. согласованы.

 

Если - атлас на , то по нему можно построить - максимальный атлас:

{все локальные карты, согласованные с }.

 

Определение 4. Гладкой структурой на называется задание максимального атласа на топологическом пространстве .

Определение 5. Гладким многообразием называется хаусдорфово топологическое пространство со счетной базой, на котором задана гладкая структура . Размерностью называется , которое фигурирует в определении локальных карт: .

Замечание 1. Фактически задание гладкой структуры определяется заданием некоторого атласа (не обязательно максимального). Именно так задаются гладкие структуры в конкретных примерах.

Замечание 2. Эквивалентный подход построения гладкой структуры основан на понятии эквивалентных атласов, а именно: , если все их локальные карты согласованы. Тогда класс эквивалентности - гладкая структура на M.

 

Определение 6. Пусть - гладкое многообразие, - соответствующий атлас. Пусть подмножество открыто в . Тогда является гладким многообразием той же размерности и называется открытым подмногообразием в .

Действительно, атлас на V строится естественным образом:

Упражнение: Показать, что - атлас на топологическом пространстве .

Примеры:

1. (все действительные числа с естественной топологией). Тогда - локальная (глобальная) карта, . Следовательно, на существует (тривиальная) гладкая структура, а поэтому - гладкое многообразие размерности 1.

Другой способ: , где .

Нетрудно видеть, что указанные (глобальные) карты не согласованы, т.е. определяют на R разные гладкие структуры.

2. - открытое подмногообразие в и в .

Вопрос: При каких гладкие структуры на , определяемые двумя вышеуказанными атласами, совпадают?

 

3. - глобальная карта, следовательно, - гладкое (тривиальное) многообразие размерности .

Упражнение: Указать другие гладкие структуры на .

4. - множество действительных прямоугольных матриц фиксированного размера . Установим естественное соответствие:

.

Таким образом, - гладкое (тривиальное) многообразие размерности .

 

5.

Нетрудно показать, что - открытое подмножество в .

Рассмотрим отображение , которое является непрерывным.

Тогда подмножество вырожденных матриц – замкнутое подмножество в .

Совершенно ясно теперь, что состоит из двух связных компонент. Следовательно, - открытое подмножество в . В соответствии с определением 6 оно автоматически является открытым подмногообразием в . Следовательно, - гладкое многообразие размерности (тривиальное).

 

6. Рассмотрим включение . Можно показать, что

- связное гладкое многообразие размерности .

7. - сфера с индуцированной из топологией.

Обозначим через N «северный» полюс сферы, а через S – ее «южный» полюс. Построим следующий атлас на :

, где и .

Заметим, что - открытые подмножества в (показать!).

- стереографическая проекция из точки на плоскость Отображение является гомеоморфизмом, а потому - локальная карта на .

 

Аналогично, пара , где - стереографическая проекция из точки , также является локальной картой на .

Докажем согласованность построенных локальных карт:

Возьмем точки и , вектор и проведем прямую

Координаты точки

(3)

Можно показать, что

(4)

- гладкая

- гладкая

Вычислим

(5)

Аналогично,

(6)

Аналогично (проверить)

Таким образом, - атлас на , а потому - гладкое (компактное) многообразие размерности 2.

Упражнение * 1. Доказать, что на можно построить атлас следующего вида:

Упражнение * 2. Доказать, что атласы и задают одну и ту же гладкую структуру на .

8. Любая двумерная поверхность в является двумерным гладким многообразием. Действительно, пусть - поверхность, - ее локальная параметризация - локальная карта на M.

Любые локальные карты согласованы (теорема об эквивалентности локальных параметризаций).

 







Дата добавления: 2015-06-12; просмотров: 905. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия