Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон сохранения энергии





2.1. Работа в механике.

При движении тела по произвольной траектории под действием силы , элементарная работа этой силы на перемещении определяется как:

 

(2.6)

Рис.1.

 

где - угол между направлением вектора силы и перемещения.

Полная работа силы на всем участке траектории определится суммированием элементарных работ на всей длине траектории :

(2.7)

Если сила постоянна, [н∙м = Дж].

Из второго закона Ньютона, и из формулы (2.7) следует, что

=

Величина называется кинетической энергией.

Теорема о кинетической энергии: Изменение кинетической энергии тела за определенный промежуток времени равно работе, совершенной всеми силами, действующими на это тело.

(2.8)

 

2.2. Понятие о потенциальной энергии.

Кинетическая энергия тела есть энергия движения. Определим работу силы тяжести при движении тела например по наклонной плоскости (рис.5)

Рис.2. К понятию о работе силы тяжести.

 

(2.9)

Эта работа не зависит от формы траектории, а определяется лишь разностью уровней высот . Величина

(2.10)

Называется потенциальной энергией.

Тогда, формула (2.8) перепишется в виде:

(2.11)

Вообще, под потенциальной энергией понимается энергия взаимодействия всех составляющих данной системы тел. При малом изменении энергии:

(2.12)

 

2.3. Закон сохранения механической энергии

(2.13)

 

Рис.3.

Пусть за малый промежуток времени частицы совершили малые перемещения ,… . Умножим скалярно каждое уравнение (2.13) на соответствующее перемещение . Получим систему:

 

(2.14)

 

Сложив эти уравнения, получим:

(2.15)

Первое слагаемое в левой части (2.13) есть приращение кинетической энергии системы. Действительно:

(2.16)

Второе слагаемое в левой части (2.14) есть работа всех внутренних сил системы.

Как показано выше (2.11), работа сил есть изменение потенциальной энергии со знаком минус (убыль потенциальной энергии). Тогда:

(2.17)

С учетом (2.15), (2.16) формулу (2.14) можно переписать как:

(2.18)

Закон сохранения механической энергии: полная механическая энергия изолированной системы, в которой действуют только консервативные силы остается неизменной.

 







Дата добавления: 2015-06-12; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия