Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТИПОВЫЕ ЗВЕНЬЯ





 

ηтех T ωц τв zнал
0,1 0,1   2,5 0,077778
0,15 0,2 0,005   0,123529
0,2 0,3 0,01   0,175
0,25 0,4 0,015   0,233333
0,3 0,5 0,02   0,3
0,35 0,6     0,376923
0,4 0,7     0,466667
0,45 0,8     0,572727
0,5       0,7
0,55       0,855556
0,6       1,05
0,65       1,3
0,7       1,633333
0,75       2,1
0,8       2,8
0,85       3,966667
0,9       6,3
0,95       13,3

 

 

 

 

Вывод: рассчитав по формуле нормы обслуживания видно, что при увеличении коэффициента технического использования ƞтех от 0,1 до 0,95 число машин обслуживаемых одним наладчиком возрастает.

 

Исследовать зависимость производительности машин от интенсивности отказов ωц и длительности рабочего цикла T и построить графики этих зависимостей.

 

  ωц1 ωц2 ωц3 ωц4 ωц5
T   0,005 0,01 0,015 0,02
0,1   8,888889   7,272727 6,666667
0,2   4,705882 4,444444 4,210526  
0,3 3,333333 3,2 3,076923 2,962963 2,857143
0,4 2,5 2,424242 2,352941 2,285714 2,222222
0,5   1,95122 1,904762 1,860465 1,818182
0,6 1,666667 1,632653 1,6 1,568627 1,538462
0,7 1,428571 1,403509 1,37931 1,355932 1,333333
0,8 1,25 1,230769 1,212121 1,19403 1,176471

 

 

Вывод: при исследовании зависимости производительности машин от длительности рабочего цикла Т и построении графика этой зависимости видно, что при увеличении длительности рабочего цикла Т от 0,1 до 0,8 производительность машины Qт уменьшается.

 

 

Вывод: при исследовании зависимости производительности машин от интенсивности отказов Wц и построении графика этой зависимости видно, что при увеличении интенсивности отказов от 0 до 0,02 производительность машины Qт уменьшается.

 

Задание №3: расчет ожидаемой надежности и производительности сблокированной автоматической линии из агрегатных станков.

 

  ni tni ni*tni
       
Циклического действия: силовой стол с многошпиндельной коробкой   0,0003 0,0036
силовой или подкатной стол с расточной или фрезерной насадкой   0,0009 0,0036
приспособление для зажима и фиксации изделий   0,002 0,016
транспортер с приводом   0,003 0,003
кондукторные плиты подвижные   0,00005 0,0006
устройство для контроля наличия отверстий   0,0019 0,0038
электрооборудование (комплект)   0,0059 0,0059
гидрооборудование (комплект)   0,0139 0,0139
Итого:   Сумма 0,0504
Непрерывного действия:      
насосная станция   0,0001 0,0002
∑Сi 0,08    
Выпуск   шт/смена  
             

 

T Bоб Вин Bто Во ηтех Qал
0,8 0,0632 0,1 0,043 0,2062 0,82905 497,4299
  0,0506 0,08 0,043 0,1736 0,852079 408,998
1,2 0,0422 0,066667 0,043 0,151867 0,868156 347,2624
1,5 0,0338 0,053333 0,043 0,130133 0,884851 283,1524

 

 

Вывод: из графика видно, что техническая производительность автоматической линии уменьшается с увеличением длительности рабочего цикла.

Отчет

 

по лабораторной работе

«Модели линейных непрерывных САУ»

Вариант 2

 

 

Выполнил: Проверил:

студент гр.022403 преподаватель

Жук Д.А. Крупская М.А.

 

 

Минск 2013

Цель работы:

– построение временных и частотных характеристик типовых звеньев систем автоматического управления (САУ) в среде MatLab;

– определение параметров передаточных функций линейных САУ по переходным характеристикам их моделей в инструментальной среде Simulink.

ТИПОВЫЕ ЗВЕНЬЯ.

 

1. Идеальное интегрирующее звено:

Передаточная функция звена: .

Текст программы:

integr=tf(5,[1 0]);

subplot(2,2,1)

step(integr)

title('Переходная характеристика')

subplot(2,2,2)

impulse(integr)

title('Импульсная характеристика')

subplot(2,2,3)

bode(integr)

title('ЛАЧХ и ЛФЧХ')

subplot(2,2,4)

nyquist(integr)

title('АФЧХ')

 

2. Идеальное дифференцирующее звено:

Передаточная функция такого звена: .

Текст программы:

dif=tf([5 0],[0 1]);

subplot(2,1,1)

bode(dif)

title('ЛАЧХ и ЛФЧХ')

subplot(2,1,2)

nyquist(dif)

title('АФЧХ')

Для идеального дифференцирующего звена не существует переходной и импульсной переходной характеристик, потому что выходом дифференцирующего звена является производная входного сигнала, т.е. его мгновенная скорость du/dt. Операция нахождения текущего значения скорости y(t)=du(t)/dt только по информации об известном в данный момент времени t сигнале u(t) физически не реализуема и поэтому идеальных дифференцирующих звеньев не существует. Тем не менее производная может быть приближенно рассчитана как 1(t)=du(t)/dt, где dt - интервал времени, du - соответствующее приращение сигнала u. При уменьшении интервала dt можно получить значение 1(t), сколь угодно близкое к текущему значению скорости x1(t). Следовательно, несмотря на нереализуемость (с абсолютной точностью) операции дифференцирования, теоретически возможно построение звена, которое обеспечивает нахождение производной du(t)/dt со сколь угодно высокой точностью. Аналогичная проблема возникает при построении переходной и импульсной переходной характеристик форсирующего звена и форсирующего звена второго порядка.

 

3. Апериодическое звено первого порядка:

Передаточная функция звена: .

Текст программы:

w=tf(5,[6.2 1]);

subplot(2,2,2)

step(w)

title('Переходная характеристика')

subplot(2,2,1)

impulse(w)

title('Импульсная характеристика')

subplot(2,2,3)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,2,4)

nyquist(w)

title('АФЧХ')

 

4. Апериодическое звено второго порядка:

Дифференциальное уравнение звена имеет вид: , причем предполагается, что , - оператор дифференцирования. В этом случае корни характеристического уравнения вещественные и уравнение можно переписать в виде:

где - новые постоянные времени.

Передаточная функция звена:

Текст программы:

T1=6.2;

T2=2.6;

T3=T1/2-(T1^2/4-T2^2)^0.5;

T4=T1/2+(T1^2/4-T2^2)^0.5;

w=zpk([],[-1/T3,-1/T4],5/(T3*T4));

subplot(2,2,1)

impulse(w)

title('Импульсная характеристика')

subplot(2,2,2)

step(w)

title('Переходная характеристика')

subplot(2,2,3)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,2,4)

nyquist(w)

title('АФЧХ')

 

5. Колебательное звено:

Передаточная функция звена:, где - постоянная времени, определяющая угловую частоту свободных колебаний ; - параметр затухания, лежащий в пределах 0<x<1.

Текст программы:

T=2.6;

e=0.56;

w=tf(5,[T^2 2*e*T 1]);

subplot(2,2,1)

impulse(w)

title('Импульсная характеристика')

subplot(2,2,2)

step(w)

title('Переходная характеристика')

subplot(2,2,3)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,2,4)

nyquist(w)

title('АФЧХ')

 

6. Форсирующее звено первого порядка:

Передаточная функция звена:

Текст программы:

T=6.2;

w=tf(5*[T 1],[0 1]);

subplot(2,1,1)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,1,2)

nyquist(w)

title('АФЧХ')

 

7. Форсирующее звено второго порядка:

Передаточная функция: , при условии .

При это звено можно представить как произведение двух элементарных форсирующих звеньев первого порядка.

Текст программы:

T=6.2;

e=0.56;

w=tf(5*[T^2 2*e*T 1],[0 1]);

subplot(2,1,1)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,1,2)

nyquist(w)

title('АФЧХ')

 

 

8. Интегрирующее звено с замедлением:

Передаточная функция звена имеет вид: .

Текст программы:

T=6.2;

w=zpk([],[0,-1/T],5/T);

subplot(2,2,1)

impulse(w)

title('Импульсная характеристика')

subplot(2,2,2)

step(w)

title('Переходная характеристика')

subplot(2,2,3)

bode(w)

title('ЛАЧХ и ЛФЧХ')

subplot(2,2,4)

nyquist(w)

title('АФЧХ')

 

 







Дата добавления: 2015-06-15; просмотров: 1552. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия