Студопедия — Основные отличия гетерохроматина от эухроматина
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные отличия гетерохроматина от эухроматина






1) Плотная упаковка ДНК. В топологически разомкнутой ДНК не может существовать торсионное напряжение. Различия в упаковке эу- и гетерохроматиновых блоков метафазных хромосом выявляются не только при окраске по Гимза (G- и С-полосы), но также при использовании электронного или фазово-контрастного микроскопа. По завершении митоза компактное состояние ДНК частично сохраняется и проявляется в виде хромоцентров интерфазного ядра. Плотная упаковка ДНК деконденсируется холодом и колцемидом.

2) Поздняя репликация ДНК. В настоящее время принято считать, что это не запаздывание репликации ДНК гетерохроматина в S-периоде клеточного цикла, а просто ДНК гетерохроматина имеет другое расписания репликации.

3) Подавлена транскрипция (инактивация Х хромосомы?). В качестве доказательства приводится пример: ядра покоящихся лимфоцитов периферической крови почти полностью гетерохроматизированы и транскрипционно неактивны.

4) Гетерохроматин вызывает эффект положения гена. В рамках обсуждаемой гипотезы автор утверждает, что ген, попавший в блок гетерохроматина, должен быть инактивирован, потому что разрывы в его ДНК будут индуцированы одновременно с индукцией разрывов в молекулах ДНК всего блока в процессе его гетерохроматинизации.

5) Склонность к агрегации (липкость). Неоднократно отмечалась упорядоченность хромосом в митозе, приписываемая «притяжению» между гетерохроматиновыми районами гомологов. Описана конъюгация гетерохроматиновых районов сестринских хроматид [2, 3]. В политенных ядрах нередко образуются эктопические контакты между блоками интеркалярного гетерохроматина разных хромосом [4].

Все эти проявления липкости могут быть следствием образования гибридных ДНК, включающих в себя однонитевые участки двух разных блоков гетерохроматина.

6) Высокая частота локализации концов перестроек хромосом. Общепринято, что хромосомная перестройка получается после разрыва пары внутри- или межхромосомных связей, инверсии концов и их последующего восстановления. Автор гипотезы предполагает, что наличие однонитевых разрывов с «липкими» концами в гетерохроматиновой ДНК заметно облегчает образование гибридных участков и тем самым увеличивает частоту перестроек, концы которых оказываются локализованными в блоках гетерохроматина

7) Формируется в онтогенезе через разрывы ДНК. Процесс формирования гетерохроматина в раннем развитии животных достаточно продолжителен и сопряжен с разрывами ДНК. У самок мышей гетерохроматинизация Х-хромосомы происходит в те же сроки, и тем же механизмом, что и формирование гетерохроматина.

8) Вариабельность количества ДНК.

9) Гетерохроматин обогащен повторами и мобильными генетическими элементами.

10) Подавлена рекомбинация в мейозе.

В2 .Изменения нуклеотидных последовательностей ДНК. Генные мутации.

Мутации по типу замены азотистых оснований. Эти мутации происходят в силу ряда конкретных причин. Одной из них может быть возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Если такая измененная форма основания остается не замеченной ферментами репарации, то при ближайшем цикле репликации она может присоединять к себе другой нуклеотид. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты (рис. 3.18). Образующийся при этом урацил, не замеченный ферментом ДНК-гликозилазой, при репликации соединяется с аденином, который впоследствии присоединяет тимидиловый нуклеотид. В результате пара Ц—Г замещается в ДНК парой Т—А (рис. 3.19, I). Дезаминирование метилированного цитозина превращает его в тимин (см. рис. 3.18). Тимидиловый нуклеотид, являясь естественным компонентом ДНК, не обнаруживается ферментами репарации как изменение и при следующей репликации присоединяет адениловый нуклеотид. В результате вместо пары Ц—Г в молекуле ДНК также появляется пара Т—А.

Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Если эта ошибка остается не замеченной ферментами репликации и репарации, измененное основание включается в процесс репликации, что нередко приводит к замене одной пары на другую. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду. При последующей репликации 5-БУ охотнее присоединяет к себе не аденин, а гуанин. Гуанин в ходе дальнейшего удвоения образует комплементарную пару с цитозином. В итоге пара А—Т заменяется в молекуле ДНК парой Г—Ц. Из приведенных примеров видно, что изменения структуры молекулы ДНК по типу замены оснований возникают либо до, либо в процессе репликации первоначально в одной полинуклеотидной цепи. Если такие изменения не исправляются в ходе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК.

В3 .Токсоплазма. Морфофункциональная характеристика: цикл развития, пути заражения, патогенное действие, методы лабораторной диагностики.

Токсоплазма (лат. Toxoplasma) — монотипный род паразитическихпротозоев, включающий, видимо, один вид — Toxoplasma gondii. Основные хозяева токсоплазм — представители семейства кошачьих. В качестве промежуточных хозяев выступают различные виды теплокровных животных, в том числе и люди. Токсоплазмоз, болезнь, вызываемая токсоплазмой, обычно протекает у человека легко. Однако для плода, в случае если мать заразилась токсоплазмозом во время беременности, а также для человека или кошки с пониженным иммунитетом эта болезнь может иметь серьёзные последствия, вплоть до летального исхода. Toxoplasma gondii принадлежит к типу Apicomplexa и является единственным описанным видом рода Toxoplasma. Тем не менее, высказывалась гипотеза, что на самом деле может существовать несколько видов токсоплазм[

Жизненный цикл Toxoplasma gondii состоит из двух фаз. Половая часть жизненного цикла проходит только в особях некоторых видов семейства кошачьих (дикие и домашние кошки), которые становятся первичным хозяином паразитов. Бесполая часть жизненного цикла может проходить в любом теплокровном животном, например, в млекопитающих (и в кошках тоже) и в птицах.

В этих промежуточных хозяевах паразит вторгается в клетки, формируя так называемые межклеточные паразитофорные вакуоли, содержащие брадизоиты, медленно воспроизводящиеся формы паразита[2]. Вакуоли формируют тканевые цисты, в основном, в мышцах и в мозге. Так как паразит находится внутри клеток, то иммунная система хозяина не может обнаружить эти цисты. Сопротивляемость к антибиотикам различна, но цисты очень трудно вывести из организма полностью. Внутри этих вакуолей T. gondii размножается последовательностью делений на две части до тех пор, как инфицированная клетка в конце концов не лопается и тахизоиты не выходят наружу. Тахизоиты подвижны и бесполым способом размножаются, производя новых паразитов. В отличие от брадизоитов, свободные тахизоиты легко устраняются иммунной системой хозяина, но при этом могут заразить клетки и сформировать брадизоиты, тем самым поддерживая инфекцию.

Тканевые цисты проглатываются кошкой (например, когда она съедает заражённую мышь). Цисты выживают в желудке кошки, и паразиты заражают эпителиальные клетки тонкой кишки, где они приступают к половому размножению и формированию ооцист. Ооцисты выходят наружу с фекалиями. Животные (в том числе, люди) проглатывают ооцисты (например, поедая немытые овощи и т. д.) или тканевые цисты (в плохо приготовленном мясе) и заражаются. Паразиты внедряются в макрофаги в кишечном тракте и через кровь распространяются по телу.

Заражение токсоплазмой в острой стадии может быть бессимптомным, но часто вызывает симптомы гриппа на раннеострых стадиях, и, как и грипп, может в редких случаях привести к смерти. Острая стадия спадает за период от нескольких дней до месяцев, переходя в хроническую стадию. Хроническая инфекция обычно бессимптомна, но в случае иммунноослабленных пациентов (а также пациентов, заражённых ВИЧ, или пациентов, проходящих иммунноподавляющую терапию после пересадки органов) токсоплазмоз может развиваться. Наиболее частым проявлением токсоплазмоза у иммунноослабленных пациентов является токсоплазмозный энцефалит, который может привести к смерти. Если заражение T. gondii возникает впервые во время беременности, то паразит может проникнуть через плаценту, заразить плод, что может привести к гидроцефалии, внутричерепному обызвествлению или к хориоретиниту, а также к самопроизвольному аборту или внутриутробной смерти.

Было доказано, что паразит может влиять на поведение хозяина: заражённые крысы и мыши меньше боятся кошек; замечены факты того, что заражённые крысы сами ищут места, где мочилась кошка. Этот эффект благоприятен для паразита, который сможет размножаться половым способом, если его хозяин будет съеден кошкой[3]. Механизм этого изменения ещё до конца не изучен, но существуют доказательства того, что токсоплазмоз повышает уровень дофамина у заражённых мышей.

Существует несколько независимых наблюдений, подтверждающих роль заражения токсоплазмой в случаях проявления шизофрении и паранойи[5]:

  • Острая инфекция токсоплазмы иногда ведёт к психотическим симптомам, не отличающимся от шизофрении.
  • Некоторые антипсихотические медицинские препараты, используемые для лечения шизофрении (например, галоперидол), также останавливают развитие токсоплазмы в клеточных культурах.
  • Несколько исследований нашли значительно повышенные уровни антител к токсоплазме у пациентов, больных шизофренией, по сравнению со всем остальным населением.[6]
  • Заражение токсоплазмой ведёт к повреждению астроцитов в головном мозге, точно такие же повреждения астроцитов наблюдаются при шизофрении.

Активным исследователем роли токсоплазмы и других инфекций при шизофрении является американский психиатр Фуллер Тори.

Билет 66

В1 . Уровни структурной организации хроматина

Сохраняя преемственность в ряду клеточных поколений, хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом.

Интерфазную и метафазную формы существования хроматина расценивают как два полярных варианта его структурной организации, связанных в митотическом цикле взаимопереходами. В пользу такой оценки свидетельствуют данные электронной микроскопии о том, что в основе как интерфазной, так и метафазной формы лежит одна и та же элементарная нитчатая структура. В процессе электронно-микроскопических и физико-химических исследований в составе интерфазного хроматина и метафазных хромосом были выявлены нити (фибриллы) диаметром 3,0—5,0, 10, 20—30 нм. Полезно вспомнить, что диаметр двойной спирали ДНК составляет примерно 2 нм, диаметр нитчатой структуры интерфазного хроматина равен 100—200, а диаметр одной из сестринских хроматид метафазной хромосомы — 500— 600 нм. Наиболее распространенной является точка зрения, согласно которой хроматин (хромосома) представляет собой спирализованную нить. При этом выделяется несколько уровней спирализации (компак-тизации) хроматина (табл. 3.2).

Фибрилла Степень укорочения Диаметр, нм
по сравнению с предшествующей структурой по сравнению с молекулой ДНК
ДНК     1—2
Нуклесомная нить      
Элементарная хроматиновая фибрилла     20—30
Интерфазная хромонема     100—200
Метафазная хроматида     500—600

Нуклеосомиая нить. Этот уровень организации хроматина обеспечивается четырьмя видами нуклеосомных гистонов: Н2А, Н2В, НЗ, Н4. Они образуют напоминающие по форме шайбу белковые тела — коры, состоящие из восьми молекул (по две молекулы каждого вида гистонов) Молекула ДНК комплектируется с белковыми корами, спирально накручиваясь на них. При этом в контакте с каждым кором оказывается участок ДНК, состоящий из 146 пар нуклеотидов (п.н.). Свободные от контакта с белковыми телами участки ДНК называют связующими или линкерными. Они включают от 15 до 100 п.н. (в среднем 60 п.н.) в зависимости от типа клетки. Отрезок молекулы ДНК длиной около 200 п. н. вместе с белковым кором составляет нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить, представляющая собой цепочку повторяющихся единиц — нуклеосом (рис. 3.46, Б). В связи с этим геном человека, состоящий из 3 · 109 п. н., представлен двойной спиралью ДНК, упакованной в 1,5 · 107 нуклеосом. Вдоль нуклеосомной нити, напоминающей цепочку бус, имеются области ДНК, свободные от белковых тел. Эти области, расположенные с интервалами в несколько тысяч пар нуклеотидов, играют важную роль в дальнейшей упаковке хроматина, так как содержат нуклеотидные последовательности, специфически узнаваемые различными негистоновыми белками.В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10—11 нм.

Хроматиновая фибрилла. Дальнейшая компактизация нуклеосомной нити обеспечивается пистоном HI, который, соединяясь с линкерной ДНК и двумя соседними белковыми телами, сближает их друг с другом. В результате образуется более компактная структура, построенная, возможно, по типу соленоида. Такая Хроматиновая фибрилла, называемая также элементарной, имеет диаметр 20—30 нм  

Интерфазная хромонема. Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли. В их образовании, по-видимому, принимают участие негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК, отдаленные друг от друга на расстояние в несколько тысяч пар нуклеотидов. Эти белки сближают указанные участки с образованием петель из расположенных между ними фрагментов хроматиновой фибриллы (рис. 3.48). Участок ДНК, соответствующий одной петле, содержит от 20 000 до 80 000 п. н. Возможно, каждая петля является функциональной единицей генома. В результате такой упаковки Хроматиновая фибрилла диаметром 20—30 нм преобразуется в структуру диаметром 100—200 нм, называемую интерфазной хромонемой.

Метафазная хромосома. Вступление клетки из интерфазы в митоз сопровождается суперкомпактизацией хроматина. Отдельные хромосомы становятся хорошо различимы. Этот процесс начинается в профазе, достигая своего максимального выражения в метафазе митоза и анафазе (см. разд. 2.4.2). В телофазе митоза происходит декомпак-тизация вещества хромосом, которое приобретает структуру интерфазного хроматина. Описанная митотическая суперкомпактизация облегчает распределение хромосом к полюсам митотического веретена в анафазе митоза.

В2. Механизмы онкогенеза. Наше тело состоит из бесчисленного числа различных клеток. Клетки очень различаются по строению и функции: клетки кожи, нервов, сердца, легких, крови, иммунной системы совершенно различны. Однако, вне зависимости от «профессии», все клетки умеют делится и созревать из своих более ранних предшественников (иначе как они могли возникнуть?). Кроме того, все клетки умеют погибать вовремя. Их гибель не случайна и тщательно контролируется: организм точно регулирует численность клеток в тканях. Запрограммированная гибель клеток называется апоптоз.

Эти три свойства - деление, созревание и апоптоз совершенно необходимы для жизни клеток в большом многоклеточном организме. Вместе с тем, нарушения этих трех основ жизнедеятельности клетки приводят к развитию опухолей. Накопление опухолевых клеток происходит из за того, что они бесконтрольно делятся, либо из за того, что они не могут созреть и превратиться в своих высоко-профессиональных потомков («заморожены» на стадии развития), либо из за того, что они не могут умереть вовремя.

Кроме того, опухоль всегда клональна. Это означает, что все клетки опухоли произошли из одной и представляют собой точные копии (клоны) исходной клетки. Строго говоря, все клетки организма клональны - ведь они возникли из зиготы, образовавшейся после слияния сперматозоида и яйцеклетки. Но во время роста и созревания организма клетки сильно специализируются и становятся совсем не похожи одна на другую.

Так, «профессия» лимфоцитов - защищать нас от инфекций. Лимфоциты отличаются друг от друга тем, что отвечают на разных возбудителей, а также своей ролью в иммунной системе. Поскольку деление, созревание и запрограммированная смерть свойственны всем клеткам, опухоль может развиться практически из любого типа клеток, в том числе из лимфоцитов.

Нарушения деления, созревания и запрограммированной гибели возникают из-за повреждений генов. Клетки имеют множество встроенных систем защиты против этих внутренних генетических ошибок, но эти защитные системы могут ошибаться, поврежденная клетка выживает и образует множество себе подобных (клонов). Повреждения некоторых генов могут наследоваться, предрасполагая к опухоли.

В3 Вопросы радиационной безопасности человека. Последствия аварии на Чернобыльской АЭС.

Вред радиоактивных элементов и воздействие радиации на человеческий организм активно изучается учёными всего мира. Доказано, что в ежедневных выбросах из АЭС содержится радионуклид «Цезий-137», который при попадании в организм человека вызывает саркому (разновидность рака), «Стронций-90» замещает кальций в костях и грудном молоке, что приводит к лейкемии (раку крови), раку кости и груди. А даже малые дозы облучения «Криптоном-85» значительно повышают вероятность развития рака кожи.

Сотрудники www.dozimetr.biz отмечают, что наибольшему воздействию радиации подвергаются люди, проживающие в крупных городах, ведь помимо естественного радиационного фона на них ещё воздействуют стройматериалы, продукты питания, воздух, зараженные предметы. Постоянное превышение над естественным радиационным фоном приводит к раннему старению, ослаблению зрения и иммунной системы, чрезмерной психологической возбудимости, гипертонии и развитию аномалий у детей.

аже самые малые дозы облучения вызывают необратимые генетические изменения, которые передаются из поколения в поколение, приводят к развитию синдрома Дауна, эпилепсии, появлению других дефектов умственного и физического развития. Особо страшно то, что радиационному заражению подвергаются и продукты питания, и предметы быта. В последнее время участились случаи изъятия контрафактной и низкокачественной продукции, являющейся мощным источником ионизирующего излучения. Радиоактивными делают даже детские игрушки! О каком здоровье нации может идти речь?!

Единственный способ хоть как-то обезопасить себя и своих близких от смертельного воздействия — купить дозиметр радиации. С ним Вы сможете за считанные секунды проверить безопасность детских игрушек, продуктов питания, ювелирных украшений и всего того, что приносите в дом, с чем играют ваши дети. Доказано, что последствия облучения крайне тяжело лечить, зато постараться максимально защитить себя и свою семью от этого в ваших силах.

4,А-собачий клещ

Билет 67

В1. Первый уровень компактизации ДНК. Структурная роль нуклиосом. Нуклиосомы при репликации. Политенные хромосомы.

В ранних биохимических и электронномикроскопических работах было показано, что препараты ДНП содержат нитчатые структуры с диаметром от 5 до 50 нм. Постепенно стало ясно, что диаметр фибрилл хроматина зависит от способа выделения препарата. На ультратонких срезах интерфазных ядер и митотических хромосом после фиксации глутаровым альдегидом обнаруживались хроматированные фибриллы толщиной 30 нм. Такие же размеры имели фибриллы хроматина при физической фиксации ядер - при быстром замораживании ядер, скалывании объекта и получении реплик с таких препаратов. В последнем случае исключалось воздействие на хроматин переменных химических условий. Но все эти методы и приемы не давали никакой информации о характере локализации ДНК и гистонов в хроматиновых фибриллах. Крупным событием в изучении хроматина было открытие двумя разными способами нуклеосом - дискретных частиц хроматина. Так при осаждении на подложку для электронной микроскопии препаратов хроматина в щелочных условиях при низкой ионной силе, можно было видеть, что нити хроматина представляли собой что-то, напоминающее "бусы на нитке": небольшие, около 10 нм, глобулы, связанные друг с другом отрезками ДНК длиной около 20 нм. Эти наблюдения совпадали с результатами фракционирования хроматина после частичного нуклеазного переваривания. Было найдено, что если подвергнуть действию нуклеазы микрококков выделенный хроматин, то он подвергается распаду на регулярно повторяющиеся структуры. Так ДНК, полученная из хроматина, обработанного нуклеазой, состояла из серии отрезков, кратных 200 парам оснований; встречались отрезки в 200, 400, 600, 800 и больше пар нуклеотидов (п.н.). Это говорит о том, что нуклеазной атаке в составе хроматина подвергаются участки ДНК, расположенные примерно через каждые 200 п.н. При этом в кислоторастворимую фракцию (низкополимерная) ДНК уходит всего 2% ядерной ДНК. Кроме того после такой нуклеазной обработки из хроматина путем центрифугирования удается выделить фракцию частиц со скоростью седиментации 11S (S - единица Сведберга, определяющая скорость седиментации частиц, равна 1 х 10-13 с), а также частицы кратного этой величине размера: димеры, тримеры, тетрамеры и т.д. Оказалось, что частицы 11S содержат ДНК около 200 п.н. и восемь гистонов (октамер) по две копии гистонов H2A, H2B, H3 и H4 и одну копию гистона H1. Такая сложная нуклеопротеидная частица получила название нуклеосомы. Более подробный анализ этой фракции показал, что нуклеосома устроена следующим образом: октамер гистонов образует белковую основу-сердцевину (от англ. core, часто в нашей литературе этот термин используется без перевода: кор, коровая частица), по поверхности которой располагается ДНК величиной в 146 п.н., образующая 1,75 оборота; остальные 54 п.н. ДНК образуют участок, несвязанный с белками сердцевины - линкер, который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Гистон H1 связывается частично с основной, сердцевиной и с участком линкера (около 30 п.н.). Следовательно, полная нуклеосома содержит около 200 п.н. ДНК (146 п.н.- сердцевина, 30 п.н. - участок линкера в комплексе с гистоном H1, 30 п.н. - свободная ДНК), октамер сердцевинных (коровых) гистонов и одну молекулу гистона H1. Молекулярная масса полной нуклеосомы - 262000 Да. Рассчитано, что на весь гаплоидный геном человека (3 х 109 пар оснований) приходится 1,5 х 107 нуклеосом. Сердцевина или коровая частица (или минимальная нуклеосома) очень консервативны по своей структуре: они всегда содержат 146 п.н. ДНК и октамер гистонов. Линкерный участок может значительно варьировать (от 8 до 114 п.н. на нуклеосому). Используя метод рассеяния нейтронов удалось установить форму и точные размеры нуклеосом. При грубом приближении - это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования они образуют «бусины», глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, как считают, имеет форму, напоминающую мяч для игры в рэгби, в состав которого входит тетрамер (H3 · H4)2 и два независимых димера H2A · H2B.

В фибриллах хроматина линкерный участок не линеен, а продолжая спираль ДНК на поверхности нуклеосомной частицы,связывает соседние нуклеосомы так, что образуется как бы сплошная нить, толщиной около 10 нм, состоящая из тесно расположенных нуклеосом. При этом за счет дополнительной спирализации ДНК (1 отрицательный супервиток ДНК на 1 нуклеосому) происходит первичная компактизация ДНК, с плотностью упаковки равной 6-7 (200 п.н. длиной 68 нм, уложены в глобулу диаметром 10 нм). Укладка почти двух витков ДНК по периферии сердцевин нуклеосомы происходит, как считается, за счет взаимодействия положительно заряженных аминокислотных остатков на поверхности октамера гистонов с фосфатами ДНК. N- и C-концевые участки сердцевинных гистонов, обогащенные положительными зарядами, вероятно, служат для дополнительной стабилизации структуры нуклеосомы.

Ведущая роль сердцевинных (коровых) белков в компактизации ДНК показана при самосборке нуклеосом. Регулируя последовательность добавления гистонов и ДНК, удалось получить полную реконструкцию нуклеосом. В этом процессе не играет никакой роли источник, откуда была взята ДНК: это может быть ДНК бактерии и даже циклическая ДНК вирусов. Оказалось, что для образования нуклеосом гистон H1 не требуется, он участвует в связывании уже готовых нуклеосом друг с другом и в образовании более высоких уровней компактизации ДНК. Ключевыми в построении нуклеосом оказались гистоны H3 и H4. При этом вначале ДНК связывается с тетрамером (H3 · H4)2 к которому позжеприсоединяются два димера H2A · H2B. Вероятно, высокая консервативность в строении гистонов H3 и H4 отражает их ведущую структурную роль на первых этапах компактизации ДНК при образовании нуклеосом.

В2 Онкогенные вирусы. Жизненный цикл ретровирусов.

Особый интерес среди вирусных болезней вызывает СПИД (синдром приобретенного иммунодефицита человека), поскольку это относительно новая болезнь. Впервые сообщение о ней появилось в США в 1981 г. СПИД вызывается вирусом иммунодефицита человека, или сокращенно ВИЧ.

Интерес к этому вирусу объясняется еще и тем обстоятельством, что ВИЧ относится к группе вирусов, получивших название ретровирусов — название, отражающее следующую особенность этого вируса. Обычно перенос генетической информации идет в направлении ДНК—> РНК, т. е. информация, закодированная в определенном отрезке ДНК (гене) транскрибируется, т. е. считывается, с образованием соответствующей РНК. У ретровирусов же, у которых наследуемым генетическим материалом служит РНК, происходит обратная транскрипция, т. е. генетическая информация считывается в обратном направлении: от РНК к ДНК.

Фермент, участвующий в обратной транскрипции, называется обратной транскриптазой. Он широко используется в генетической инженерии.

ВИЧ инфицирует и разрушает лейкоциты определенной группы, называемые Т-хелперными лимфоцитами, подавляя в результате активность иммунной системы.

 

В3 Химическое и радиоактивное загрязнение окружающей среды. «Зелёные столицы» Европы.

Представленная работа посвящена теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов.
Тема "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Однако, требуется учет современных условий при исследовании проблематики обозначенной темы.
Высокая значимость и недостаточная практическая разработанность проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" определяют несомненную новизну данного исследования.
Дальнейшее внимание к вопросу о проблеме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования.
Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.
Результаты могут быть использованы для разработки методики анализа "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Теоретическое значение изучения проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" заключается в том, что избранная для рассмотрения проблематика находится на стыке сразу нескольких научных дисциплин.
Объектом данного исследования является анализ условий "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
При этом предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач данного исследования.
Целью исследования является изучение темы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" с точки зрения новейших отечественных и зарубежных исследований по сходной проблематике.
В рамках достижения поставленной цели автором были поставлены и решения следующие задачи:
1. Изучить теоретические аспекты и выявить природу "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
2. Сказать об актуальности проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современных условиях;
3. Изложить возможности решения тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
4. Обозначить тенденции развития тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
Работа имеет традиционную структуру и включает в себя введение, основную часть, состоящую из 3 глав, заключение и библиографический список.
Во введении обоснована актуальность выбора темы, поставлены цель и задачи исследования, охарактеризованы методы исследования и источники информации.
Глава первая раскрывает общие вопросы, раскрываются исторические аспекты проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Определяются основные понятия, обуславливается актуальность звучание вопросов "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
В главе второй более подробно рассмотрены содержание и современные проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Глава третья имеет практический характер и на основе отдельных данных делается анализ современного состояния, а также делается анализ перспектив и тенденций развития "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
По результатам исследования был вскрыт ряд проблем, имеющих отношение к рассматриваемой теме, и сделаны выводы о необходимости дальнейшего изучения/улучшения состояния вопроса.
Таким образом, актуальность данной проблемы определила выбор темы работы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", круг вопросов и логическую схему ее построения.
Теоретической и методологической основой проведения исследования явились законодательные акты, нормативные документы по теме работы.
Источниками информации для написания работы по теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" послужили базовая учебная литература, фундаментальные теоретические труды крупнейших мыслителей в рассматриваемой области, результаты практических исследований видных отечественных и зарубежных авторов, статьи и обзоры в специализированных и периодических изданиях, посвященных тематике "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", справочная литература, прочие актуальные источники информации.

Еврокомиссия учредила новую премию «Зеленая столица Европы», чтобы оценить европейские города с точки зрения экологии, состояния окружающей среды и перспектив развития экотуризма.
В результате сравнения множества параметров, из 35 городов, претендовавших на получение «зеленой премии», было выбрано восемь финалистов: Амстердам, Бристоль, Копенгаген, Фрибург, Гамбург, Мюнстер, Осло и Стокгольм.

Но абсолютных победителя оказалось два: Стокгольм станет «Зеленой столицей Европы» в 2010 году и Гамбург – в 2011-м.

Столица Швеции, построенная на архипелаге из 14 островов, окружена лесопарковыми оазисами, до которых легко можно добраться из центра города благодаря очень эффективной транспортной системе. Два «зеленых сердца» Стокгольма – Дьюргарден (Djurgården) и Экопаркен (Ekoparken). Экопаркен – первый в мире городской национальный парк, площадью более 30 квадратных километров, имеет особую ценность для экологии. К 2050 году Стокгольм должен полностью перейти на альтернативные источники энергии и стать полностью независимым от невозобновляемых источников энергии, таких как газ, нефть и уголь.Второй по величине европейский порт и самый зеленый город Германии - Гамбург не случайно будет нести звание «Зеленой столицы» в 2011 году. Экологи отмечают эффективные природосберегающие технологии городского хозяйства, а туристы – обилие растений в Гамбурге. Кроме того, расположенный в городе парк Planten un Blomen, включает в себя огромный ботанический сад, тропическую оранжерею и самый обширный в Европе японский сад. А муниципальный Standpark считается самыми большим «зеленым театром» - в парке расположена открытая сцена, а также крупный планетарий.

4,простейшие,саркожгутиконосцы,класс-жгутиковые,ЛЯМБЛИЯ Кишечная(лямблия интерстиналис).1.-ядро,2-жгутики

 

Билет 68

В1 . Второй и третий уровень организации хромотина.

Петлевые домены ДНК - третий уровень структурной организации хроматина Расшифровка принципа строения элементарных хромосомных компонентов - нуклеосом и 30 нм фибрилл - еще мало что дает для понимания основ трехмерной организации хромосом, как в интерфазе, так и в митозе. Сорокакратное уплотнение ДНК, которое достигается при сверхспиральном характере ее компактизации, совершенно ещ







Дата добавления: 2015-06-15; просмотров: 2793. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия