Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИНЦИП ПОРИЗМА





Формулировка принципа поризма

Чтобы несколько отдохнуть от абстрактных построений, свя­занных с анализом свойств информации и принципов функцио­нирования информационных систем, рассмотрим старое, но крайне редко используемое в науковедении понятие поризм.

В нашу литературу понятие «поризм» ввел философ Б. С. Грязнов [1]. «В античной литературе, – писал он, – поризмом называ­ли утверждение, которое получалось в процессе доказательства теоремы или решения задачи, но получалось как непредвидимое следствие, как промежуточный результат. Хотя поризм получается как логическое следствие, но, поскольку он не является целью по­знавательной деятельности, для исследователя он может оказаться неожиданным» (стр. 62).

Понятие это можно определить и несколько иначе. Так, поризмом можно называть такое утверждение, сформулированное в ходе реше­ния какой-либо задачи, которое по содержанию своему охватывает намного более широкий круг явлений, нежели тот, к которому эта задача относилась. Тем самым формулировка поризма оказывает­ся значительно более ценной, чем решенная с его помощью и, тем самым, вызвавшая его к жизни задача. Поэтому поризм с полным правом можно называть «счастливой находкой».

Феномен поризма может иметь место не только в рассудоч­ной человеческой деятельности, но и в царстве живой природы. Пусть некоторая популяция организмов начинает испытывать давление со стороны какого-либо нового фактора. «Злобой дня» становится адаптация к этой новой ситуации. Задача по адап­тации может решаться, как правило, несколькими разными спо­собами. Ряд решений может оказаться равноправным, и тогда идет дифференциация популяции на субпопуляции, дающие на­чала подвидам и т.д. Однако одно из таких решений, не имеющее в данной ситуации особых преимуществ по сравнению с другими, может быть связано с такими изменениями структу­ры и функций организмов, которые открывают новые пути для их дальнейшего развития, в том числе и в направлениях широ­ких идиоадаптаций или араморфозов. Такие изменения генети­ческой информации также можно относить к поризмам.

Теперь мы можем сформулировать «принцип поризма», а ниже постараемся показать, что принцип этот играет одну из главных ролей в динамике всех видов информации. Принципом поризма будем называть следующее утверждение.

Любое решение любой задачи может оказаться пригодным и для решения других задач, к первой прямого отношения не имеющих. Если решаемые таким образом задачи относятся к некоторому множеству, включающему первую задачу как част­ный случай, такое решение будем называть поризмом.

Принцип поризма замечателен тем, что подчеркивает значе­ние такого возможного решения какой-либо задачи, которое порождает множество разного рода задач, допускающих такие же решения, – т.е. приводит к формулированию новой пробле­мы, уже имеющей свое решение. Рассмотрим несколько приме­ров поризма в науке и в живой природе.

Примеры из области развития науки

В уже упоминавшейся работе Б. С. Грязнова приведено два примера поризма в развитии науки.

Один пример относится к Н. Копернику. Согласно распро­страненному мнению, задача, решение которой привело Н. Ко­перника к утверждению факта вращения Земли, имела куда ме­нее грандиозный характер. Это была задача точного исчисления дня Пасхи, т.е. первого воскресенья после первого полнолуния, наступающего после дня весеннего равноденствия. Исчисление дня весеннего равноденствия проводилось еще Птолемеем, но ко времени Н. Коперника, т.е. к началу XVI века, выявились суще­ственные расхождения – до 10 суток – между такими расчетами и действительным сроком его наступления. В поисках причин, вызывающих это расхождение, Н. Коперник изменил неподвиж­ную систему отсчета – вместо Земли, принимаемой за начало координат Птолемеем, он в качестве такого взял систему не­подвижных звезд. Следствием такового изменения координатной сетки явилась необходимость постулировать вращение Земли как вокруг собственной оси, так и вокруг Солнца, что Н. Коперник и сделал. Таким образом, первоначально Н. Коперник не зани­мался проблемой устройства Вселенной, а решал задачу нахож­дения точки весеннего равноденствия. Утверждение о вращении Земли появилось у Н. Коперника как промежуточное умозаклю­чение в ходе решения этой задачи.

Другой пример, приводимый Б. С. Грязновым, относится к открытию М. Планком квантируемости энергии. Известно, что постулат о существовании квантов энергии Планк сформулировал вынужденно, получив эмпирическую формулу, сводящую за­кон излучения для коротких волн к формуле Вина, а для длин­ных волн – к формуле Рэлея. Для объяснения найденной им формулы М. Планк должен был приписать физический смысл входящим в нее константам. Одной из этих констант и оказа­лась h - постоянная Планка. Из этой формулы следовало, что энергия всех систем, совершающих гармонические колебания, квантуется порциями E = nhv, а также что если даже и сущест­вуют какие-либо другие виды энергии, то они не могут взаимо­действовать с веществом, а следовательно, и не могут быть об­наружены. Замечательно то, что сам М. Планк, будучи творцом квантовой теории, еще много лет не мог принять всех следую­щих из нее выводов, в том числе и реальности существования квантов энергии.

К этим примерам можно добавить еще один, и этого, пожа­луй, будет достаточно для иллюстрации роли поризма в разви­тии научных идей. Это история создания И. Ньютоном дифференциального исчисления. Метод дифференциального исчисления (метод «исчисления флюксий») И. Ньютон, как известно, изобрел в 1665 г., когда ему было всего 22 года, но долго его не пуб­ликовал, пользуясь им лишь для решения конкурсных матема­тических задач. Лишь много позже, после выхода соответст­вующих статей Г. Лейбница, он вступил с ним в жаркую поле­мику, отстаивая свой приоритет. Не ясно, осознавал ли И. Нью­тон с самого начала общее значение этого метода или рассмат­ривал его лишь как ординарный, хотя и новый математический прием.

Можно с уверенностью утверждать, что случаев, подобных описанным выше (хотя, возможно, и не такого масштаба), в ис­тории науки достаточно много, и аналогичные примеры можно привести из разных областей знания. Но вот что замечательно: ситуаций, подобных принципу поризма в развитии идей, много и в живой природе, хотя до сих пор, кажется, на это не обра­щалось должного внимания.

Примеры из области биологии

Как уже упоминалось, в биологии поризмами можно назы­вать такие изменения организации живых организмов, которые, решая задачи «сегодняшнего дня», в то же время открывают новые возможности для их дальнейшего развития. К сожалению, точно реконструировать каждый такой случай весьма затрудни­тельно (о поризмах, произошедших давно, мы можем судить лишь по их результатам, а поризмы, которые произошли не­давно, еще не успели себя выявить). Поэтому здесь нам придет­ся пользоваться в значительной мере лишь правдоподобными догадками.

К явным поризмам, пожалуй, можно отнести случаи повы­шения надежности геномов при переходах от низших кариотаксонов к высшим [2]. Действительно, частота возникновения губительных изменений генетической информации (т.е. летальных мутаций) в общем случае должна быть пропорциональной от­ношению М·К-1, где М - информационная емкость или число оснований в нуклеиновой кислоте, а К –надежность генетиче­ского аппарата. Таким образом, при постоянстве К частота ле­тальных мутаций будет возрастать прямо пропорционально М –информационной емкости генетического аппарата. При достиже­нии М некоторого критического значения, угрожающего жизне­способности популяции, выход из этой ситуации становится жизненно важным для данных обитателей данной среды. Реше­ния этой задачи могут быть самыми разными, в том числе уменьшение размеров генетических структур, развитие систем, предотвращающих губительное действие помех, а также увели­чение К – надежности организации генетического аппарата. По­следнее решение – повышение К –не только удовлетворяет требова­ниям «злобы дня», но и открывает возможности для дальнейшего увеличения информационной емкости генетических структур, т.е. для увеличения числа оснований в нуклеиновых кислотах, по крайней мере, до тех пор, пока мутационное давление опять не возрастет до критического значения. На основании результатов радиобиологических экспериментов [3] можно думать, что в ходе эволюции повышение К происходило не менее трех раз, причем каждый раз это осуществлялось путем усложнения структурной организации генома, что переводило живые организмы из 1-го кариотаксона (К = 1·102эВ) во 2-й (К = 1,1·10s. эВ), из 2-го – в 3-й (К = 4,6·103 эВ), а из 3-го – в 4-й (К=6,1·106эВ). Это сопро­вождалось увеличением информационной емкости генетического аппарата клеток, от первичных вирусоподобных организмов (1-й кариотаксон) до высших эукариот (4-й кариотаксон) примерно в 105–106 раз – от 105— 107 до 1011–1012 оснований. Такое возраста­ние информационной емкости генома, в свою очередь, служило основой для прогрессивной эволюции живых организмов, так как позволяло не только накапливаться в избытке генетической информации, но и периодически уменьшать мутационное давле­ние путем «сброса» более или менее значительных фрагментов генетического аппарата в ходе приспособления к различным экологическим нишам [4]. Здесь, следовательно, увеличение на­дежности генома, решая задачу выхода биологических объектов из-под мутационного пресса, в то же время открывало новые пути для дальнейшего развития живых организмов в направле­нии все большего повышения их организации. Это, конечно, яркий пример поризма в биологии.

Другим примером может служить возникновение оогамии, произошедшее еще на стадии одноклеточных эукариот. Как из­вестно (см., напр. [5, 6]), этим организмам присуще огромное разнообразие форм полового размножения – изогамия, гетеро­гамия разной степени выраженности и истинная оогамия, когда женские особи формируют богатые цитоплазмой, крупные и не­способные самостоятельно перемещаться яйцеклетки, а мужские – многочисленные мелкие, почти лишенные цитоплазмы, подвиж­ные сперматозоиды. По-видимому, в экологических нишах, засе­ленных такими организмами, разные способы размножения в равной мере удачно решали задачу воспроизведения и мультип­ликации кодирующей их генетической информации, почему они и сохранились до сих пор. Но лишь один из этих способов – оогамия – содержал в себе потенциальную возможность форми­рования многоклеточности. Для этого достаточно было возник­нуть мутации (которая не могла бы проявиться у организмов, не обладающих оогамией), препятствующей расхождению клеток -продуктов первых дроблений оплодотворенной яйцеклетки, что­бы было положено начало существования первым примитивным многоклеточным организмам, а последующая морфофизиологическая дифференциация таких клеток могла уже окончательно закрепить этот признак. Многоклеточность, в свою очередь, явилась предпосылкой возникновения высших растений, грибов и животных, а также человека, т.е. предпосылкой формирования структур, сделавших возможность появления поведенческой, а затем и логической информации. Поэтому возникновение оога­мии также может служить ярким примером поризма в биологи­ческой эволюции.

Третий, и последний, пример, который мы хотели бы при­вести, это – возникновение фотосинтеза [7]. Примитивный фото­синтез, еще не связанный с окислением молекулы воды и выде­лением кислорода, возник, по-видимому, около 3,5 млрд. лет назад, у прокариот, являвшихся предками современных пурпур­ных и зеленых бактерий. Эта форма фотосинтеза явилась одним из решений задачи энергообеспечения бурно развивающегося то­гда мира прокариот, относящихся ко 2-му кариотаксону, наряду с такими решениями этой же задачи, как хемосинтез и анаэробный гликолиз. В результате длительной эволюции фотосинтезирующего аппарата около 3 млрд. лет назад у некоторых групп прокариот (по-видимому, предков ныне живущих циано-бактерий) сформировался механизм, способный окислять воду, и в первобытную атмосферу Земли начал поступать кислород. Энергетические преимущества, связанные с оксигенным фотосин­тезом, позволили не только успешно размножаться его облада­телям, но и привели около 2 млрд. лет назад к формированию кислородсодержащей атмосферы и трансформации анаэробной биосферы в аэробную, со всеми вытекающими отсюда последст­виями, в том числе формированием и широким расселением многоклеточных эукариот, включая высшие растения и предков современных таксонов животных. В данном случае такая «счаст­ливая находка», как оксигенный фотосинтез, не только чрезвы­чайно обогатила возможности дальнейшего развития обладаю­щих ею организмов, но оказала решающее влияние на будущее всего населения нашей планеты, приведя к формированию еди­ной, охватывающей весь Земной шар, богатой кислородом ат­мосферы. Все последующее развитие жизни на Земле, в том числе и формирование человеческих цивилизаций, протекало уже в рамках аэробной биосферы.

Принцип поризма и полипотентность информации

Рассмотрим теперь принцип поризма с позиции тех свойств, которые присущи информации.

Прежде всего, вспомним свойство полипотентности (глава 2) – возможность использовать оператор, кодируемый данной инфор­мацией, в разных ситуациях и для достижения разных целей. Важнейшим следствием этого свойства было, как мы помним, ут­верждение, что как ценность, так и эффективность любой инфор­мации может быть задана только в форме распределения на множестве пар «ситуация-цель». Мы отмечали также, что множе­ство это никогда не может быть полным – никогда априори нельзя предугадать, для какой еще пары «ситуация-цель» ценность данной информации окажется больше нуля. Нетрудно видеть, что принцип поризма является еще одним следствием полипотентности информации – этим термином объединяются те случаи, когда реализация свойства полипотентности информации приводит к переходу кодируемых ею информационных систем в пространства режимов большей размерности, освоение которых сопровождается дальнейшим увеличением количества информации и/или возникно­вением ее новых, иерархически более высоких, форм. Таким об­разом, поризмы – это лишь определенный класс из множества возможных проявлений свойства полипотентности.

Вряд ли необходимо подробно анализировать соотношение принципа поризма с такими вариантами реализации полипотентности, которые в области биологической эволюции получили названия идиоадаптаций и араморфозов [8]. Отметим лишь, что оба эти варианта развития информационных систем будут рассмот­рены в главе 5, посвященной динамике информации. Понятия, охватываемые этими терминами, а также терминами «полипотентность» и «поризм», весьма широки, частично перекрываются и, строго говоря, относятся к явлениям разных классов. Полипотентность, как мы видели, это – одно из свойств информа­ции, поризм – это определенный класс частных случаев реали­зации полипотентности, т.е. относится скорее к особенностям операторов, а не информации, а идиоадаптаций и араморфозы – результаты реализации свойства полипотентности в операторы и скорее приложимы к описанию определенных структур опера­торов, нежели свойств кодирующей их информации.

Литература

1. Грязное Б. С. Природа, 1977, №4, С. 60-64.

2. Корогодин В. И. Природа, 1985, №2, с. 3-14.

3. Корогодин В. И. Радиобиология, 1982, т. 22, в.2, С. 147-154.

4. Шальнов М. И. Радиобиология, 1977, т. 17, в.5, С. 652.

5. Курсанов Л. И. Комарницкий Н. А., Флеров Б. К. Курс низ­ших растений. М.-Л., Госмедгиз, 1933.

6. Райков И. Б. Ядро простейших. Л., «Наука», 1978.

7. Холл Д., Рао К. Фотосинтез. М., «Мир», 1983.

8. Северцов А. Н. Морфологические закономерности эволюции. В кн.: Собр.соч., т.V, М.-Л., Изд. АН СССР, 1949.

 







Дата добавления: 2015-08-30; просмотров: 403. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия