Развитие классических представлений о пространстве и времени.
Пространство и время являются основными категориями в физике, ибо большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и времени. В то же время пространство и время относятся к фундаментальным понятиям культуры. Они, имеют длительную историю, занимают важное место, как в учениях Древнего Востока, так и в мифологии, а позднее в науке Древней Греции Уже пифагорейцы, описывая космос, осознают (воспринимаемый и нами с самого раннего детства, как очевидный) факт трехмерности пространства, в котором мы живем. Философия Платона также использует представление о трехмерности пространства. Познать природные элементы, по Платону, это значит познать их геометрически, то есть определить их пространственное образование. Поэтому и атомы Платона, соответствующие 4 стихиям: огонь, воздух, вода и Земля, различны, ибо представляют собой различные геометрические многоугольники: атомы Земли имеют форму куба, огня — форму тетраэдра (четырехгранник), воздуха — форму октаэдра (восьмигранник), воды — форму икосаэдра (двадцатигранник). Платоново-пифагорийская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. В главном труде Евклида - «Началах» излагаются основные свойства пространства и пространственных фигур. В современной науке широко используется понятие евклидового пространства как плоского пространства трех измерений. Наряду с понятием пространства в Древней Греции были выработаны такие понятия как пустота и эфир. Существование пустоты постулируется именно в целях решения проблемы движения: движение сводится к простейшему перемещению атомов в пустоте. В учении атомистов пустота входит в качестве первоначала на равных правах с атомами. Атомы, в отличие от пустоты, это полное и твердое сущее, лишенное каких-либо внутренних различий, и поэтому неделимое, неизменное, вечное. Одновременно в греческую науку входит и понятие «эфира», как нечто противоположного пустоте, «обнимающего все прочее». Т.е., понятия вакуума и эфира с самого своего возникновения соответствуют различным представлениям о состоянии мира. Галилей применил научный метод исследования, в основе которого лежал научный эксперимент с характерной для него чертой — идеализацией ситуации, позволяющей устанавливать точные математические закономерности явлений природы В своем труде «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» в Галилей формулирует два основных принципа механики — принцип инерции и принцип относительности. По существу, эти принципы описывают свойства пространства Вселенной. Задача, поставленная Декартом, — математизация физики, точнее ее геометризация по типу евклидовой; геометрии. Изучение физического мира возможно только с помощью математики. Следовательно, физика должна опираться на небольшое число аксиом, из которых дедуктивно выводится упорядоченная последовательность выводов, обладающих той же степенью достоверности, что и первичные аксиомы. Объективный мир, по Декарту, не что иное как материализованное пространство или воплощенная геометрия. Согласно Декарту в мире не существует пустого пространства, ибо в этом случае существовала бы нематериальная протяженность. Протяженность материальна, следовательно, пространство заполнено субстанцией. Форма тел сводится к протяженности, масса сводится к геометрическому пространственному объему тела, индивидуальность которого проявляется только в движении. Разграничение собственно тела и пространства представляется следствием различных скоростей частей пространства. Итак, фундаментальными свойствами материи являются протяженность и движение в пространстве и во времени. И эти свойства могут быть строго описаны математически Отрицая пустоту, Декарт постулирует существование эфира. Позиция Декарта как геометра физики привела к созданию им новой области математики — аналитической геометрии. Декарт вводит координатную систему, известную как декартова система координат. Натурфилософия Ньютона представляет собой синтез различных методологических установок его предшественников в единую целостную концепцию: идея пустого пространства связывается с идеей инерциального прямолинейного движения (Галилей, Декарт); аристотелевская концепция непрерывного пространства и непрерывного времени связывается с платоновским идеалом описания движения как всеобщего отношения; в основу иерархического строения вещества кладется атом Демокрита, который в Новое время рассматривается уже как экспериментально исследуемая частица. Любая вещь считается составленной из атомов и может быть разложена на свои составляющие. Представление о пустоте у Ньютона связывается с существованием абсолютного пространства: «Абсолютное, пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным». Ньютон определяет также и абсолютное, истинное математическое время: «Абсолютное, истинное-математическое время само по себе и самой своей сущности, безо всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью». «Время и пространство представляют собой как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения». В механике Ньютона работает принцип относительности Галилея. Понятие силы Ньютон вводит в качестве абсолютного элемента. Истинное абсолютное движение, в отличие от относительного, «не может ни произойти, ни измениться иначе, как от действия сил, приложенных непосредственно к движущемуся телу». Ньютон дает также динамическую трактовку массы тела, как индивидуальной характеристи ки тела по отношению к нетождественному ему пустому пространству. То есть понятия «силы» и «массы» у Ньютона — это как бы «надпространственные» понятия. Введение Ньютоном абсолютного времени, то есть времени, не зависящего от движения, основывается на постулате о мгновенном распространении взаимодействий в пустоте, что явилось основой построения Ньютоном теории тяготения. Ньютону удается построить стройную теорию, связывающую механику Галилея и законы движения планет Кеплера, основывающуюся на идее пустого пространства и мгновенной скорости передачи взаимодействий на любые сколь угодно дальние расстояния. Тем самым Ньютон формулирует в науке принцип дальнедействия. Механика Ньютона, развитая в работах Д'Аламбера, Лагранжа, Лапласа, Гамильтона, Якоби и др. получает стройную завершенную форму, основанную на принципах, определяющих научную картину мира того времени и называемую механистической научной картиной мира. Ее основные принципы: 1.«Себетождественность» физического объекта, «внеположенность» его в пространстве и во времени; 2.Детерминированность поведения физического объекта (строгая однозначная причинно-следственная связь между конкретными состояниями объекта); 3.Обратимость всех физических процессов. 4.Редукционизм и элементаризм. Механистическая концепция целого и части. Эти принципы являются следствием представлений о непрерывном пустом пространстве и непрерывном времени, в которых выделено индивидуальное тело. Себетождественность движущегося тела гарантируется непрерывным изменением координат и непрерывным изменением времени. Благодаря тому, что возможно зарегистрировать существование тела и определить его скорость в каждой точке интервала между одним положением и другим, делается вывод о том, что перед нами одно и то же тело, само себе тождественное. Континуалистская методология явилась основой для возникновения дифференциального и интегрального исчислений (Ньютон, Лейбниц). Из непрерывности состояний себетождественного физического объекта вытекает существование дифференциальных уравнений, с помощью которых, зная начальные условия, можно с абсолютной достоверностью предсказать все последующее движение тела. Интегрирование дифференциальных уравнений сводится к вычислению траекторий движения частицы, которые дают полное описание поведения частицы как в прошлом, настоящем, так и в будущем, то есть характеризуются свойствами детерминированности и обратимости. Детерминированность означает, что достаточно задания начальных условий и уравнений движения тела, чтобы получить полное описание движения частицы. Собственно, основной задачей механики является определение траектории движения тела, то есть установления строгой причинной за висимости координат (положения тела в пространстве) в зависимости от времени. Траектория — это линия, которую описывает тело в пространстве при своем движении. В механике Ньютона движение тела происходит по строго определенным траекториям,то есть вследствие себетождественности, индивидуальности физического объекта мы всегда можем одновременно измерить и его координату, и его скорость. Представления об иерархическом строении вещества ио себетождественности физического объекта сформировали механистическую концепцию части и целого в ньютоновской физике, в основе которой лежат принцип редукционизма и элементаризма. Можно выделить три основных момента этой концепции: а) целое рассматривается как простое соединение элементов. Возможно разложение, разделение целого на его элементы, то есть редукция сложного к простому; б) элементы целого рассматриваются как неизменяющиеся, простые, неделимые; в) элемент внутри и вне целого один и тот же. Это формирует представление об объекте познания как самостоятельной сущности с присущими ему характеристиками и свойствами, не зависящими от условий познаний, а тем более от познающего его субъекта. Заложенная Ньютоном в основания его физики идеология адекватно служила целям науки на протяжении длительного периода вплоть до начала двадцатого столетия.
В механике Ньютона тела взаимодействуют на расстоянии, и это взаимодействие происходит мгновенно. Именно эта мгновенность передачи взаимодействий и обуславливает ненужность какой-либо среды и утверждает принцип дальнедействия. Декартом развивалась противоположная точка зрения на природу взаимодействий, согласно которой материя взаимодействует с материей лишь при непосредственном соприкосновении. Таким агентом, передающим взаимодействия от тела к телу, являются частички эфира. Эфир трактуется Декартом как тончайшая жидкость, безграничной протяженности, существующей повсюду, — как в порах тел, так и вне их, как подвижный, текучий, непрерывный. Последователем Декарта стал голландский математик и физик Христиан Гюйгенс. Известны два альтернативных взгляда на природу света — корпускулярная точка зрения, отстаиваемая Ньютоном, согласно которой свет — поток частиц, корпускул. И точка зрения Гюйгенса о волновой природе света, согласно которой свет — это волна, распространяющаяся в упругой механической среде, которая есть светоносный эфир. Наряду со светоносным эфиром, для объяснения электрических свойств тел Бенджамином Франклином вводится понятие электрического эфира, а Францем Эпинусом - понятие о магнитной жидкости. Принятие концепции эфира — это, по су ществу, принятие точки зрения близкодействия — передачи взаимодействия от одной точки эфира к другой, что привело в исследованиях Фарадея и Максвелла к выработке понятия поля. Фарадей принимает электрическое действие на расстоянии, однако не на основе ньютоновского взаимодействия, а посредством силовых линий, которые соединяют друг с другом частицы. Новый взгляд Фарадея наполнил пустое пространство Ньютона непрерывной совокупностью материальных субстанций — силовым полем. Максвелл констатирует существование поля как реальности. В дальнейшем поле как реальность наделяется теми же характеристиками, что и вещество — энергией, массой (введено Дж. Томсоном), импульсом (определенным из опытов по измерению давления света П.Н. Лебедевым).
|