Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Научный метод познания.





 

Метод – это совокупность приемов и операций практического и теоретического освоения действительности.

Существует целая область знания, которая специально занимается изучением методов, которая именуется методологией.

Методология – это учение о методах.

Изучая закономерности человеческой познавательной дея­тельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.

Методы научного познания принято подразделять по степени их общности, т. е. по широте применимости в процессе научного исследования на всеобщие, общенаучные и частнонаучные.

Всеобщих методов в истории познания известно два: диалектический и метафизический.

Метафизический метод с середины XIX века начал все больше и больше вытесняться из естествознания диалектическим методом.

Общенаучные методы используются в самых различных областях науки, т. е. имеют весьма широкий междисциплинарный спектр применения. Классификация общенаучных методов тесно связана с понятием уровней научного познания.

Различают два уровня научного познания: эмпирический и теоретический. Одни общенаучные методы применяются только на эмпирическом уровне (наблюдение, эксперимент, измерение), другие — только на теоретическом (идеализация, формализация), а некоторые (например, моделирование) — как на эмпирическом, так и на теоретическом уровнях.

Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений; выполнения разнообразных измерений, постановки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т. п. Кроме того, уже на втором уровне научного познания — как следствие обобщения научных фактов — возможно формулирование некоторых эмпирических закономерностей.

Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне происходит раскрытие наиболее глубоких, существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям. Теоретический уровень — более высокая ступень в научном познании. Результатами теоретического познания становятся гипотезы, теории, законы.

Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т. п.), с которыми имеет дело эмпирический уровень исследования.

В свою очередь, эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обусловливает и обосновывает применяемые при этом методы

Частнонаучные методы – это методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления.

Каждая частная наука (биология, химия, геология и т. д.) имеет свои специфические методы исследования.

Частнонаучные методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания. В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т. д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связаны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира.

 

К общенаучным методам эмпирического познания относятся: научное наблюдение, эксперимент, измерение.

Наблюдение есть чувственное (преимущественно - визуальное) отражение предметов и явлений внешнего мира.

Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:

· целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, свя занных с этой задачей);

· планомерностью (наблюдение должно -проводиться строго по плану, составленному исходя из задачи исследования);

· активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).

Научные наблюдения всегда сопровождаются описанием объекта познания. Это необходимо для фиксирования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования.

Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

По способу проведения наблюдения могут быть непосредственными и опосредованными.

При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека.

В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях как важный (а иногда и незаменимый) метод научного познания. Визуальные наблюдения с борта пилотируемой орбитальной станции — наиболее простой и весьма: эффективный метод исследования из космоса параметров атмосферы, поверхности суши и океана.

Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным.

Опосредованное наблюдение проводится с использованием тех или иных технических средств.

Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.

Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств челове­ка, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, — это не сами микрообъекты, а только результаты их воздействия на определенные технические средства исследования.

Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно — по таким видимым, их проявлениям, как образование треков, состоящих из множества капелек жидкости.

Эксперимент предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных его сторон, свойств, связей.

Экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.

Эксперимент включает в себя другие методы эмпирического исследования (наблюдение, измерение). В то же время он обладает рядом присущих только ему особенностей.

Во-первых, эксперимент позволяет устранять; всякого рода побочные факторы, наслоения, затрудняющие процесс исследования.

Например, проведение некоторых экспериментов требует специально оборудованных: помещений, защищенных (экранированных) от внешних электромагнитных воздействий на изучаемый объект,

Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия.

Например, изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях иди, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т. п. В таких искусственно созданных условиях удается обнаружить удивительные, порой неожиданные свойства объектов и тем самым глубже постигать их сущность. Очень интересными и многообещающими являются в этом плане космические' эксперименты, позво­ляющие изучать объекты, явления в таких особых, необычных условиях (невесомость, глубокий вакуум), которые недостижимы в земных лабораториях.

В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание.

В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.

Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имевшихся знаний об объекте исследования.

Примером могут служить эксперименты, поставленные в лаборатории Э. Резерфорда, в ходе которых обнаружилось, что при бомбардировке альфа-частицами золотой фольги большинство частиц проходило сквозь фольгу, небольшое количество частиц отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отскакивали обратно, как мяч от сетки. Такая экспериментальная картина, согласно расчетам, получалась в силу того, что вся масса атома сосредоточена в ядре, занимаю­щем ничтожную часть его объема (отскакивали обратно альфа-частицы, соударявшиеся с ядром). Так, исследовательский эксперимент, привел к обнаружению ядра атома.

Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений.

Так, существование целого ряда элементарных частиц (позитрона, нейтрона, нейтрино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментально.

Исходя из методики проведения и получаемых результатов эксперименты можно разделить на качественные и количественные.

Качественные эксперименты носят поисковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление.

Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении.

В реальной практике экспериментального исследования качественные и количественные эксперименты реализуются, как правило, в виде последовательных этапов развития познания.

 

Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений.

Измерение — это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения — это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение «1»).

В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году на XI Генеральной конференции по мерам и весам. Система СИ построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц.

 

К общенаучным методам теоретического познания относятся: абстрагирование и идеализация, формализация, индукция и дедукция.

Абстрагирование заключается в мысленном отвлечении от менее существенных свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта.

Результат, получаемый в процессе абстрагирования, именуют абстракцией.

В научном познаний широко применяются абстракции отождествления и изолирующие абстракции.

Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов} и объединения их в особую группу.

Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые, виды, роды, отряды и т. д.

Изолирующая абстракция получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности. Например, «устойчивость», «растворимость», «электропроводность» и.т. п.

Мысленная деятельность исследователя в процессе научного познания включает в себя особый вид абстрагирования, который называют идеализацией.

Идеализация представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований.

В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов.

Так, широко распространенная в механике идеализация, именуемая материальной точкой, подразумевает тело, лишенное всяких размеров. Массой этого тела, однако, не пренебрегают. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения. Причем подобная абстракция позволяет заменить в исследовании самые различные реальные объекты: от молекул или атомов при решении многих задач статистической механики и до планет Солнечной системы при изучении, например, их движения вокруг Солнца.

Изменения объекта, достигаемые в процессе идеализации, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действительности неосуществимыми.

Примером может служить введенная путем идеализации в физику абстракция, известная под названием абсолютно черного тела. Такое тело наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя. Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияния природа вещества излучателя или состояние его поверхности. А если можно теоретически описать спектральное распределение плотности энергии излучения для идеального случая, то можно кое-что узнать и о процессе излучения вообще.

Целесообразность использования идеализации определяется следующими обстоятельствами.

Во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического, анализа.

А по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих реальных объектов. (Последнее, в сущности, и удостоверяет плодотворность идеализации, отличает ее от бесплодной фантазии).

Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов.

Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.

В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, свя зи изучаемого объекта не влияют в рамках данного исследования на его сущность.

Например, упомянутая абстракция материальной точки.

Правильный выбор допустимой идеализации играет очень большую роль.

Так, если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальных точек, то такая идеализация становится недопустимой при изучении структуры атома. Точно так же можно считать материальной точкой нашу планету при рассмотрении ее вращения вокруг Солнца, но отнюдь не в случае рассмотрения ее собственного суточного вращения.

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления.

 

Под формализацией понимается особый; подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символом (знаков).

Примером формализации являются используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания.

Для построения любой формальной системы необходимо:

1) задание алфавита, т. е. определенного набора знаков;

2) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы».

3) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

В результате создается формальная знаковая система в виде определенного искусственного языка.

Достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.

Формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности.

Формализованные языки не могут быть единственной формой языка современной науки. В научном познании необходимо использовать и неформализованные системы. Но тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной.

 

Индукция – это метод познания, основывающийся на формально-логическом умозаключении, которое приводит к получению общего вывода на основании частных посылок.

Т.е. индукция – это есть движение нашего мышления от частного, единичного к общему.

Индукция широко применяется в научном познании. Например, в на основании многочисленных опытов с проводниками, выполненными из различных металлов, сформировался общий вывод об электропроводности всех металлов.

Индукция, используемая в научном познании (научная индукция), может реализовываться виде следующих методов:

1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие — различны; следовательно, этот единственный сходный фактор есть причина данного явления).

2. Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).

3. Соединенный метод сходства и различия (представляет собой комбинацию двух вышеуказанных методой).

4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой некоторые изменения в другом явлении, то отсюда вытекает вывод о причинной связи этих явлений).

5. Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих факторов известны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления - остальные факторы, входящие в общую причину этого явления).

Дедукция есть получение частных выводов на основе знания каких-то общих положений.

Т.е. дедукция - это есть движение нашего мышления от общего к частному, единичному.

Например, из общего положения, что все металлы обладают электропроводностью, можно сделать дедуктивное умозаключение об электропроводности конкретной медной проволоки (зная, что медь - металл). Если исходные общие положения являются установленной научной истиной, то методом дедукции всегда будет получен истинный вывод.

Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, пожалуй, единственной собственно дедуктивной наукой.

Индукция и дедукция в процессе научного познания не применяются, как изолированные, обособленные друг от друга. Каждый из них используется на со­ответствующем этапе познавательного процесса.

 

К общенаучным методам, применяемым, как на эмпирическом, так и теоретическом уровнях научного познания относятся: анализ и синтез, аналогия и моделирование.

Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения.

В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п.

Анализ — необходимый этап в познании объекта. С древнейших времен анализ применялся, например, для разложения на составляющие некоторых веществ. В частности, уже в Древнем Риме анализ использовался для проверки качества золота и серебра в виде так называемого купелирования (анализируемое вещество взвешивалось до и после нагрева). Постепенно формировалась аналитическая химия, которую по праву можно называть матерью современной химии: ведь прежде чем применять то или иное вещество в конкретных целях, необходимо выяснить i;«ro химический состав

Анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания.

Если бы, скажем, химики ограничивались только анализом, т. е. выделением и изучением отдельных химических элементов, то они не смогли бы познать все те сложные вещества, в состав которых входят эти элементы.

Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания — перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого — возможно только в том случае, если метод анализа дополняется другим методом — синтезом.

Под синтезом понимают соединение воедино составных частей (сторон, свойств, признаков и т. п.) изучаемого объекта, расчлененных в результате анализа.

На этой основе происходит дальнейшее изучение объекта, но как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов к единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т. е. позволяет понять подлинное диалектическое единство изучаемого объекта.

Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретическом познании, Но и здесь, как и на эмпирическом уровне познания, анализ и синтез - это не две оторванные друг от друга операции. По своему существу они - как бы две стороны единого аналитико-синтетического метода позна­ния.

 

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов.

Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии.

Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта А и В. Известно, что объекту А присущи свойства Р1 Р2,..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р1, Р2,...., Рп, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (P1, P2,..., Рп) у обоих объектов может быть сделано предположение о наличии свойства Рп+1 у объекта В.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше, чем:

1) больше известно общих свойств у сравниваемых объектов;

2) существеннее обнаруженные у них общие свойства;

3) чем глубже познана взаимная закономерная связь этих сходных свойств.

При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство объектов утрачивает всякое значение.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте.

Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой.

Первый объект, который собственно и подвергается исследованию именуется моделью, а другой объект, на который переносятся выводы, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т. д.).

Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимнооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект – оригинал.

В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования.

1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей.

Например, модель атома, предложенная Э.Реэерфордом, напоминала Солнечную систему: вокруг ядра («Солнца») обращались электроны («планеты»). Следует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно воспринимаемых физических моделей.

2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях».

Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия, Поучительным примером этого является вошедшая в историю гибель английского корабля-броненосца «Кэптэн», построенного в 1870 году. Исследования известного ученого-кораблестроителя В. Рида, проведенные на модели корабля, выявили серьезные дефекты в его конструкции. Но заявление ученого, обоснованное опытом с «игрушечной моделью», не было принято во внимание английским Адмиралтейством. В результате при выходе в море «Кэптэн» перевернулся, что повлекло за собой гибель более 500 моряков.

В настоящее время физическое моделирование широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций, оросительных систем и т. п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.

3. Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов или, например, модели, представленные в виде химической символики и отражающие

ских реакций.

Особой разновидностью символического (знакового) моделирования является математическое моделирование. Взаимосвязи между различными величинами, описывающими функционирование объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффициентов уравнений и т. п.), называется математической моделью явления.

Математическое моделирование может применяться в сочетании с физическим моделированием. Такое сочетание, именуемое вещественно-математическим ( или предметно-математическим) моделированием, позволяет исследовать процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы протекающих в модели; которые, однако, описываются теми же математическими соотношениями, что и исходные процессы.

Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.

В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме.

4. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели.

В данном случае компьютер вместе с введенной в нее программой соответствующих расчетов представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.

Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на компьютере различных вариантов ведется накопление фактов, что дает возможность произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.

 







Дата добавления: 2015-08-30; просмотров: 3032. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия