Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №2





Тема 5. Производная и дифференциал

[2] гл. IX, § 1—5; [3] № 907, 908, 910;

[2] гл. X; [3] № 850, 857, 875, 888, 945, 956

[2] гл. XII; [3] № 1067, 1075, 1077.

Разберите решение задачи 8 данного пособия.

Задача 8. Найдите производные функции:

а)у=In (2+sin 3х); б) у=(3 +1) ;

в) cos (ху )-3у

Решение: а) Последовательно применяя правилодиф ­ ференцирования сложной функции, правила и формулы диф­ференцирования, имеем:

у' = '= '= '+(sin3х)' = '= ;

б)у'= '=4(3 +1) *(3 +1)'=4(3 +1) *3 *In3*(arctg )'=

=4(3 +1) * 3 *In3* * '= *3 *(3 +1) ;

в) В данном случае функциональная зависимость задана в неявном виде. Для нахождения производнойу' нужно продифференцировать по переменнойх обе части уравнения, считая при этому функцией отх, а затем полученное урав­нение разрешить относительноу':

-sin (ху )*(ху )'-6уу'+4=0,

-sin (ху )*(у +2хуу')-6уу'+4=0,

sin (ху )-2хуу' sin (ху )-6уу'+4=0.

Из последнего уравнения находиму':

2уу' х sin (ху )+3 =4- у sin (ху ),

у'= .

 

Вопросы для самопроверки

  1. Что называется производной функции?
  2. Каков геометрический, физический смысл производ­ной?
  3. Как взаимосвязаны непрерывность функции и ее дифференцируемость в точке?
  4. Напишите основные правила дифференцирования функций.
  5. Напишите формулы дифференцирования основных эле­ментарных функций.
  6. Сформулируйте правило дифференцирования сложной функции.
  7. Что называется дифференциалом функции?
  8. Каков геометрический смысл дифференциала функ­ции.
  9. Перечислите основные свойства дифференциала функ­ции.
  10. Напишите формулу, позволяющую находить прибли­женное значение функции при помощи ее дифференциала.
  11. Как найти производную второго, третьего, n-го поряд­ков?
  12. Как найти дифференциал второго порядка от данной функции?

 







Дата добавления: 2015-08-17; просмотров: 543. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия