Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 10. Дифференциальные уравнения





[2] гл. XXII § 1—13; [3] № 2058, 2067, 2094, 2102, 2165, 2186,2213,2215,

Разберите решение задач 12, 13 данного пособия.

Задача 12. Решить уравнениеу'—уtgх =-у2соз х.

Решение. Данное уравнение является уравнением Бернулли. Для его решения (как и для линейного уравнения) ис­комую функцию у представим в виде произведения двух дру­гих функций:и=и(х) и = (x), то есть введем подстановку у=и* . Тогдау'=и' ' и данное уравнение примет вид:

и' + и '- и tg х= - .

или

(и'-иtgх)+и '=- . (1)

Выберем функцию и так, чтобы

и'-иtgх=0. (2)

При подобном выборе функции и уравнение (1) примет вид

и '=- или '=- . (3)

Решая (2) как уравнение с разделяющимися переменными, имеем:

, , In и = - In cos х, и=- .

Здесь произвольная постоянная С=0. Подставляя найденное значение и в уравнение (3), имеем:

, , , .

Тогда у=и* = - общее решение данного уравнения.

 

Задача 13. Найти частное решение уравненияу"+4у=4sin2х-8cos2х, удовлетворяющее начальным условиям у(0)=0, у' (0) =0.

Решение. Общее решение у данного уравнения равно сумме общего решения у однородного уравнения и какого-либо частного решения у данного уравнения, то есть

у= у + .

Для нахожденияу составим характеристиче­ское уравнение R +4=0, имеющее комплексные корни.

R =2i и R =-2i. В этом случае общее решение однородного уравнения ищем в виде

у = е cos х+С sin ), (4)

где — комплексные корни характеристического уравне­ния. Подставив в (4) =0, = 2, имеем:

у =C cos2х+С sin2х.

Для нахождения частного решения неоднородного диф­ференциального уравнения воспользуемся следующей тео­ ремой: если правая часть неоднородного уравнения есть функция f(х)= е (аcos х+bsin ) и числа не явля­ются корнями характеристического уравнения, то существует частное решение

= е (Аcos х+Вsin ). Если же числа являются корнями характеристического уравнения, то существует частное решение

= хе (Аcos х+Вsin ).

Применяя эту теорему при , , имеем:

= х (Аcos2х+Вsin2х).

 

Дважды дифференцируя последнее равенство, находим =(4В-4Ах)cos2х+(-4А-4Вх)sin2х.

Подставив в данное уравнение и получим:

4 В соз2х—4 А sin2х=4sin2х-8соз2х,

откудаА =-1, В = —2.

Следовательно, =-х(cos2х+2sin2х) и у= C cos2х+С sin2х-х(cos2х+2sin2х).

Найдем у':

у'=-2 sin2х+2С cos2х- cos2х-2 sin2х-х(-2 sin2х+4 cos2х).

Используя начальные условия, получим систему

, откуда C =0, С = .

 

Следовательно,

у= sin2х-х(cos2х+2sin2х) - есть искомое частное решение данного дифференциального уравнения.

 

Вопросы для самопроверки

12. Что называется дифференциальным уравнением?

13. Что называется общим решением дифференциального уравнения? частным решением?

14. Каков геометрический смысл частного решения диф­ференциального уравнения первого порядка?

15. Приведите примеры дифференциальных уравнений с разделяющимися переменными.

16. Какое дифференциальное уравнение первого порядка называется линейным? уравнением Бернулли? Укажите спо­соб их решения.

17. Какое уравнение называется линейным дифференци­альным уравнением второго порядка?

18. Какое уравнение называется характеристическим для однородного дифференциального уравнения второго порядка?

19. Какой вид имеет общее решение однородного диффе­ренциального уравнения второго порядка в зависимости от дискриминанта характеристического уравнения?

20. Как найти общее решение неоднородного дифферен­циального уравнения второго порядка с постоянными коэф­фициентами?

21. Какой вид имеет частное решение неоднородного диф­ференциального уравнения второго порядка с постоянными коэффициентами, если его правая часть есть многочлен? по­казательная функция? тригонометрическая функция?







Дата добавления: 2015-08-17; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия