Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 3. Элементы линейной алгебры





[5] гл. XXI; [3] № 592, 624, 628.

Разберите решение задачи 5 данного пособия.

Задача 5. Данную систему уравнений записать в матрич­ной форме и решить ее с помощью обратной матрицы:


Р е ш е н и е. Обозначим через А — матрицу, коэффициен­тов при неизвестных; X — матрицу-столбец неизвестных ; Н — матрицу-столбец свободных членов:

А= , Х= , Н=

С учетом этих обозначений данная система уравнений при­нимает следующую матричную форму:

А*Х=Н. (1)

Если матрица А — н е в ы р о ж д е н н а я (ее определитель отличен от нуля), то она имеет обратную матрицу А . Умножив обе части уравнения (1) на А , получим:

А *А*Х= А *Н.

Но А *А=Е — единичная матрица), а ЕХ=Х,.поэто­му

Х=А *Н (2)

Равенство (2) называется матричной записью реше­ния системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матри­цу А

Пусть имеем невырожденную матрицу

А= . Тогда А = ,


где А (i=1,2,3; j=1, 2, 3) —алгебраическое дополнение элемента а в определителе матрицы А, которое является произведением (—1)i+j на минор (определитель) второго по­рядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.

Вычислим определитель и алгебраические дополнения А элементов матрицы А.

=10 - следовательно матрица А име­ет обратную матрицу А .

, ,

, ,

, ,

, ,

.

Тогда

А = = .

По формуле (2) находим решение данной системы уравнений в матричной форме:

Х= А *Н= .

Отсюда х =3, х =0, х =-2.

Вопросы для самопроверки

  1. Что называется определителем второго, третьего, п- го порядков?
  2. Назовите основные свойства определителей.
  3. Что называется минором, алгебраическим дополнением элемента определителя?
  4. Напишите формулы Крамера решения системы линей­ных уравнений. В каких случаях их можно использовать?
  5. Назовите схему решения системы линейных уравнений по методу Гаусса.
  6. Что называется матрицей?
  7. Как определяются основные действия над матрицами?
  8. Какая матрица называется обратной по отношению к данной матрице? Как найти матрицу, обратную данной?
  9. Что называется рангом матрицы? Как найти ранг мат­рицы?
  10. Сформулируйте теорему Кронекера-Капелли.
  11. Опишите матричный способ решения системы линей­ных уравнений.
  12. Какова геометрическая интерпретация систем линей­ных уравнений и неравенств?






Дата добавления: 2015-08-17; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия