Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 2. Векторная алгебра и аналитическая геометрия в пространстве





гл XVIII; [3] № 372, 382, 397, 405, 418, 421;

[1] гл. XIX § 1-4; [3] № 452, 455, 457, 496.

Разберите решениезадачи 4 данного пособия.

Задача 4. Даны координаты трех точек:

А (3; 0; —5), В(6, 2,1), С(12,-12,3).

Требуется: 1) записать векторы и в системе орт и найти модули этих векторов; 2) найти угол между векторами и ; 3) составить уравнение плоскости, проходящей че­рез точку С перпендикулярно вектору .

Решение. 1. Если даны точки и , то вектор через орты , , выражается следую­щим образом: = = а . (1)

Подставляя в эту формулу координаты точек А и В, имеем:

.

Подобным образом = (12-3) +(-12-0) +|(3+5) = 9 -12 +8 .

Модуль вектора вычисляется по формуле

. (2)

Подставляя в формулу (2) найденные ранее координаты векторов и , находим их модули:

, .

  1. Косинус угла , образованного векторами и , равен их скалярному произведению, деленному на произведение их модулей

cоs = . (3)

Так как скалярное произведение двух векторов, заданных своими координатами, равно сумме попарных произведений одноименных координат, то * =3*9+2*(-12)+6*8=51. Применяя (3), имеем:

cоs = соs ( ^ )= ; 64 '.

  1. Известно, что уравнение плоскости, проходящей через точку М0() перпендикулярно вектору , имеет вид

А (х-хо) +В (у-у0) + С(г-z0) =0. (4)

По условию задачи искомая плоскость проходит через точ­ку С(12; —12; 3) перпендикулярно вектору {3; 2; 6}. Подставляя в (4) А=3, В=2, С=6, х0=12, у0=—12, z0 = 3, получим:

3(х-12) +2(у+12)+6(z-3)=0,

3х+2у+6z-30=0 — искомое уравнение плоскости.

Вопросы для самопроверки

  1. Какие величины называются скалярными? векторны­ми?
  2. Какие векторы называются коллинеарными?
  3. Какие два вектора называются равными?
  4. Как сложить два вектора? Как их вычесть?
  5. Как найти координаты вектора по координатам точек его начала и конца?
  6. Назовите правила сложения, вычитания векторов, за­данных в координатной форме. Как умножить вектор на ска­ляр?
  7. Дайте определение скалярного произведения двух век­торов. Перечислите основные свойства скалярного произве­дения.
  8. Как найти скалярное произведение двух векторов по их координатам?
  9. Напишите формулу для определения угла между дву­мя векторами.
  10. Напишите условия: коллинеарности двух векторов; их перпендикулярности.
  11. Напишите общее уравнение плоскости.
  12. Напишите уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
  13. Какой вид имеет уравнение плоскости, проходящей че­рез три данные точки?
  14. Напишите формулу для определения расстояния от точки до плоскости.






Дата добавления: 2015-08-17; просмотров: 559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия