Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Временная стоимость денег, простые и сложные проценты, аннуитеты





Ставка процентов – величина, характеризующая интенсивность начисления процентов.

Наращение первоначальной суммы долга – увеличение суммы долга за счет присоединения начисленных процентов и доходов.

Множитель наращения – величина, показывающая во сколько раз возрос первоначальный капитал.

Период начисления – промежуток времени, за который начисляются проценты.

Интервал начисления – минимальный период, по прошествии которого происходит начисление процентов.

Существуют два способа начисления процентов.

Декурсивный способ – проценты начисляются в конце каждого интервала начисления. Их величина определяется исходя из величины предоставляемого капитала. Декурсивная процентная ставка представляет собой сумму начисленного за определенный интервал дохода к сумме, имеющейся в начале интервала, в процентном отношении.

Антисипативный (предварительный) способ – проценты начисляются в начале каждого интервала начисления. Сумма процентных денег определяется исходя из наращения суммы. Процентной ставкой будет выраженное в процентах отношение суммы дохода за интервал к величине наращенной суммы, полученной по прошествии этого интервала. Такая процентная ставка называется учетной.

Простые ставки применяются к одной и той же первоначальной денежной сумме в течение всего периода начисления. При декурсивном способе простые ставки применяются обычно в краткосрочных финансовых операциях, когда интервал начисления совпадает с периодом начисления и составляет срок менее одного года, или когда после каждого интервала кредитору выплачиваются проценты.

Если обозначить будущую сумму S, а современную (или первоначальную) P, то I = S – P (1). Процентная ставка i является относительной величиной, измеряется в десятичных дробях или %, и определяется делением процентов на первоначальную сумму: i=I/P

Кроме процентной существует учетная ставка d (другое название – ставка дисконта), величина которой определяется по формуле:

S-P=D, P=S (2)

где D – сумма дисконта.

Однако продолжительность ссуды (или другой финансовой операции, связанной с начислением процентов) n необязательно должна равняться году или целому числу лет. Если обозначить продолжительность года в днях буквой K (этот показатель называется временная база), а количество дней пользования ссудой t, то использованное в формулах (3) и (4) обозначение количества полных лет n можно будет выразить как t/K. Подставив это выражение в (1) и (2), получим:

для декурсивных процентов: S=P(1+ i) (3)

для антисипативных процентов: S=P (4)

Если после очередного интервала начисления доход не выплачивается, а присоединяется к денежной сумме, имеющейся на начало этого интервала, для определения наращенной суммы применяется формула сложных процентов.

Сложные ставки процентов учитывают возможность реинвестирования процентов, так как в этом случае наращение производится по формуле не арифметической, а геометрической прогрессии, первым членом которой является начальная сумма P, а знаменатель равен (1 + i).

P, P * (1 + i), P * (1 + i)2, P * (1 + i)3 , …, P * (1 + i)n,

где число лет ссуды n меньше числа членов прогрессии k на 1 (n = k – 1).

Наращенная стоимость (последний член прогрессии) находится по формуле:

S=P*(1+I) (5)

где (1 + i) n – множитель наращения декурсивных сложных процентов.

Так же как и в случае простых процентов возможно применение сложной учетной ставки для начисления процентов (антисипативный метод):

S=P* 1/(1-d)^n (6)

где 1/(1 – d)^n – множитель наращения сложных антисипативных процентов.

Формула наращения по сложным процентам при начислении их m раз в году имеет вид:

S=P*(1+ )^m*n (7)

При начислении антисипативных сложных процентов, номинальная учетная ставка обозначается буквой f, а формула наращения принимает вид:

S= (8)

Наиболее щепетильные кредиторы, принимая во внимание большую эффективность простых процентов на коротких отрезках времени, используют смешанный порядок начисления процентов в случае, когда срок операции (ссуды) не равен целому числу лет: сложные проценты начисляются на период, измеренный целыми годами, а проценты за дробную часть срока начисляются по простой процентной ставке.

S=P*(1+i)^a+ (9)

Непрерывная процентная ставка (очевидно, что при непрерывном начислении речь может идти только о сложных процентах) обозначается буквой δ (читается «дельта»), часто этот показатель называют «сила роста». Формула наращения по непрерывной процентной ставке имеет вид:

S=P*e^δn (10)

где e – основание натурального логарифма (≈2,71828...),

e n – множитель наращения непрерывных процентов.

Существует несколько правил, позволяющих быстро рассчитать срок удвоения первоначальной суммы для каждой конкретной процентной ставки.

Правило «72»:

n = 72 / i %.

Правило «69»:

n = (69 / i %) + 0,35.

Данные правила дают достаточно точный результат при небольших значениях i, т.е. до i% = 100%.

Финансовые потоки, формируемые под воздействием изменения стоимости денег во времени, имееют свои закономерности и тягу к упорядоченности. В финансовом анализе для обозначения денежных потоков в наиболее общем смысле используется термин рента. Каждый отдельный рентный платеж называют членом ренты. Частным случаем ренты является финансовая рента или аннуитет – такой поток платежей, все члены которого равны друг другу, так же как и интервалы времени между ними.

Рекомендуемая литература:

 

1. Беренс В., Хавранек П.М. Руководство по оценке эффективности инвестиций. – М.: АОЗТ «Интерэксперт»; «ИНФРА - М», 1995

2. Бригхем Ю., Гапенски Л. Финансовый менеджмент (т. 1, 2). – СПб.: Экономическая школа, 1998

3. Криничанский К. Финансовая математика. Учебное пособие. – М.: «Дело и Сервис», 2011. – 336 с.

4. Печенежская И. Финансовая математика: сборник задач. – М.: Феникс, 2008. – 188 с.

5. Четыркин Е.М. Финансовая математика. – М.: «Дело и Сервис», 2011. – 392 с.

 

Примеры решения задач:







Дата добавления: 2015-08-17; просмотров: 1042. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия