Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замечания 1.10.





 

1. Для доказательства формулы (1.9) можно использовать следующее соображение. Множество векторов на плоскости со стандартным базисом можно рассматривать как множество таких векторов в пространстве с базисом , у которых аппликата равна нулю. Поэтому формулу вычисления скалярного произведения векторов и можно получить из (1.10), полагая .

 

2. Скалярное произведение можно записать в матричном виде: если и координатные столбцы векторов и в стандартном базисе, то их скалярное произведение находится формуле:

 

Для векторов на плоскости соответственно получаем

 

3. Координаты вектора в ортонормированием базисе равны его скалярным произведениям на соответствующие базисные векторы:

 

В самом деле, подставляя в (1.10) координаты базисного вектора , приходим к первому равенству (остальные равенства получаются аналогично).

 

4. Формулы (1.9) и (1.10) совместно с геометрическими свойствами скалярного произведения имеют многочисленные приложения (см. разд. 1.6.2).

 

 

Пример 1.15. Даны векторы.

 

Найти скалярные произведения.

 

Решение. По формуле (1.10) вычисляем

 

Сравнивая вектор со скалярными произведениями обнаруживаем, что при умножении вектора на базисный вектор получается соответствующая координата данного вектора. Этот результат иллюстрирует пункт 3 замечаний 1.10.

 

 

Для нахождения скалярного произведения можно использовать матричную запись (см. пункт 2 замечаний 1.10). Например, векторам соответствуют координатные столбцы

 

 

Поэтому

 


что совпадает с полученными ранее результатами.

 

 

Пример 1.16. Прямоугольный параллелепипед построен на векторах (см. рис. 1.38). Точка — центр грани , точка делит ребро в отношении . Требуется найти:

 

а) величину угла между векторами и ;

 

б) длину ортогональной проекции вектора на прямую .


Решение. Находим координаты векторов в стандартном базисе :

 

(см. решение примера 1.12)

 

По формуле (1.10) находим скалярные произведения:

 

 


а также длины векторов (см. геометрическое свойство 1 скалярного произведения):

 

Длина была найдена в примере 1.12.

 

Теперь по геометрическому свойству 2 находим косинус искомого угла

 

т.е.

 

Алгебраическое значение длины ортогональной проекции находим по геометрическомусвойству 3:

 

 







Дата добавления: 2015-08-17; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия