Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Замечания 1.10.





 

1. Для доказательства формулы (1.9) можно использовать следующее соображение. Множество векторов на плоскости со стандартным базисом можно рассматривать как множество таких векторов в пространстве с базисом , у которых аппликата равна нулю. Поэтому формулу вычисления скалярного произведения векторов и можно получить из (1.10), полагая .

 

2. Скалярное произведение можно записать в матричном виде: если и координатные столбцы векторов и в стандартном базисе, то их скалярное произведение находится формуле:

 

Для векторов на плоскости соответственно получаем

 

3. Координаты вектора в ортонормированием базисе равны его скалярным произведениям на соответствующие базисные векторы:

 

В самом деле, подставляя в (1.10) координаты базисного вектора , приходим к первому равенству (остальные равенства получаются аналогично).

 

4. Формулы (1.9) и (1.10) совместно с геометрическими свойствами скалярного произведения имеют многочисленные приложения (см. разд. 1.6.2).

 

 

Пример 1.15. Даны векторы.

 

Найти скалярные произведения.

 

Решение. По формуле (1.10) вычисляем

 

Сравнивая вектор со скалярными произведениями обнаруживаем, что при умножении вектора на базисный вектор получается соответствующая координата данного вектора. Этот результат иллюстрирует пункт 3 замечаний 1.10.

 

 

Для нахождения скалярного произведения можно использовать матричную запись (см. пункт 2 замечаний 1.10). Например, векторам соответствуют координатные столбцы

 

 

Поэтому

 


что совпадает с полученными ранее результатами.

 

 

Пример 1.16. Прямоугольный параллелепипед построен на векторах (см. рис. 1.38). Точка — центр грани , точка делит ребро в отношении . Требуется найти:

 

а) величину угла между векторами и ;

 

б) длину ортогональной проекции вектора на прямую .


Решение. Находим координаты векторов в стандартном базисе :

 

(см. решение примера 1.12)

 

По формуле (1.10) находим скалярные произведения:

 

 


а также длины векторов (см. геометрическое свойство 1 скалярного произведения):

 

Длина была найдена в примере 1.12.

 

Теперь по геометрическому свойству 2 находим косинус искомого угла

 

т.е.

 

Алгебраическое значение длины ортогональной проекции находим по геометрическомусвойству 3:

 

 







Дата добавления: 2015-08-17; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия