Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение векторов.





Определение. Векторным произведением вектора на вектор называется третий вектор , который удовлетворяет следующим трем условиям:

1) и ;

2) тройка векторов является правоориентированной;

3) .

рис.2.

Обозначение: .

Из определения следует, что, если векторы , и отложить от одной точки, то

1) вектор перпендикулярен плоскости, в которой лежат векторы и ;

2) кратчайший поворот вектора к вектору происходит против часовой стрелки, если смотреть "сверху", т.е. со стороны вектора ;

3) длина вектора численно равна площади параллелограмма, построенного на векторах и , как на его сторонах.

Теорема. (Свойства векторного произведения.)

1). Антикоммутативность:

, .

2). Условие коллинеарности векторов:

.

3). Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах и , как на его сторонах.

Доказательство. 1) Пусть . Рассмотрим вектор . Этот вектор удовлетворяет всем трем условиям определения векторногопроизведения вектора на вектор .

Действительно, т.к. и , то и и . Далее, тройка векторов является правоориентированной, т.е. кратчайший поворот от вектора к вектору происходит против часовой стрелки, если смотреть на плоскость, в которой лежат векторы и "снизу", т.е. со стороны вектора .

И, наконец, , ч.т.д.

2) Если один из векторов или оба равны нулю, то они коллинеарные и их векторное произведение равно нулевому вектору, тут все очевидно. Пусть векторы и ненулевые. Тогда или , а это в свою очередь равносильно тому, что , ч.т.д.

3) Следует из формулы площади параллелограмма.

Теорема доказана.







Дата добавления: 2015-08-17; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия