Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выражение векторного и смешенного произведения через координаты векторов.





Пусть в пространстве выбран ортонормированный базис i, j, k. Наложим на этот базис еще одно дополнительное условие, а именно: из конца вектора k поворот от i к j по кратчайшему направлению должен быть виден против часовой стрелки.

Определение 10.27 Упорядоченную тройку некомпланарных векторов будем называть правой тройкой векторов, если из конца третьего вектора поворот от первого вектора ко второму вектору по кратчайшему направлению виден против часовой стрелки. Если поворот виден по часовой стрелке, то тройку называют левой тройкой векторов.

Оказывается, если векторы правой тройки изменять непрерывно, но так, чтобы в любой момент времени они были не компланарны, то в любой момент такой деформации эта тройка векторов будет правой тройкой. Аналогичным свойством обладает и левая тройка векторов.

Отметим также, что определение векторного произведения и правой (левой) тройки вектров связаны с наличием в пространстве "физических" объектов: часов, человека и т. п. В абстрактном векторном пространстве, где такие объекты отсутствуют, определить, какая тройка -- правая, а какая -- левая, невозможно. Можно только все некомпланарные тройки векторов разбить на два класса такие, что при непрерывной деформации тройки одного класса, при которой в любой момент векторы тройки не компланарны, тройка все время остается в своем классе.

Итак, пусть в трехмерном пространстве задан ортонормированный базис i, j, k, векторы которого образуют правую тройку векторов. Такой базис будем называть правым.

Используя определение векторного произведения, легко проверить следующую таблицу умножения :

a \ b i j k
i   k - j
j - k   i
k j - i  


Предложение 10.24 Пусть , . Тогда

Доказательство. По условию , . В силу предложений 10.20 и 10.21 получим

(10.5)


По тем же правилам

По таблице умножения . Аналогично находим , . Подставив полученные результаты в формулу (10.5), получим

 

Запомнить полученную формулу довольно тяжело. Чтобы облегчить этот процесс, введем еще два дополнительных объекта -- матрицу и определитель.

Матрицей второго порядка будем называть таблицу из четырех чисел, которая обозначается , матрицей третьего порядка называется таблица из 9 чисел --

Определителем матрицы второго порядка будем называть число . Определитель второго порядка обозначается .

Определителем матрицы третьего порядка будем называть число

Сформулируем словами правило вычисления определителя третьего порядка.

Берем первый элемент первой строки. Мысленно вычеркиваем строку и столбец с этим элементом. Умножаем этот элемент на определитель, оставшийся после вычеркивания. Затем пишем знак "-" и берем второй элемент первой строки. Мысленно вычеркиваем строку и столбец с этим элементом и пишем оставшийся определитель. Затем пишем знак "+" и третий элемент первой строки. Снова вычеркиваем строку и столбец с этим элементом и пишем оставшийся определитель.

В дальнейшем мы увидим, что столь сложно введенное понятие определителя оказывается очень полезным при решении систем линейных уравнений, определении линейной зависимости векторов и во многих других задачах.

Пример 10.1 Вычисление определителей:

1) .

 

2)

 

.

Формула для определителя третьего порядка позволяет кратко записать формулу для вычисления векторного произведения.

Предложение 10.25 Если в правом ортонормированном базисе i, j, k заданы координаты векторов , , то

(10.6)


Доказательство. Достаточно лишь написать формулу вычисления приведенного в теореме определителя и сравнить ее с формулой предложения 10.24.

 

Пример 10.2 Пусть , . Тогда

 

Задача. Пусть вершины треугольника расположены в точках , , . Найдите площадь треугольника.

Решение. По предложению 10.22 . Находим , ,

то есть . Тогда

Ответ: .

Задача. Найдите такой единичный вектор e, ортогональный векторам , , что тройка векторов a, b, e -- левая.

Решение. Найдем вектор :

Вектор c ортогонален векторам a и b. Найдем его длину: . Тогда -- единичный вектор, ортогональный векторам a, b. Векторы a, b, c, а следовательно, и векторы a, b, . образуют правую тройку векторов. Поэтому .







Дата добавления: 2015-08-17; просмотров: 522. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия