Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моделирование процесса разработки решения





При глубоком изучении крупных проблем, требующих решения, используются научные методы, такие как системный анализ, исследование операций. Их основу составляет математическое моделирование. В предыдущем параграфе отмечалось, что сущность моделирования состоит в подборе математических схем, адекватно описывающих процессы, происходящие в действительности.

Строгая формализация социально-экономических процессов функционирования предприятия практически невозможна. Поэтому сложность составления математической модели связывается с тем, насколько точно она отражает реальность. А это во многом зависит от исходных данных и интерпретации полученных результатов. Тем не менее математическое моделирование в социально-экономической области подчас выступает единственной возможностью количественного анализа процессов и явлений, так как натурный эксперимент либо невозможен, либо ограничен.

Положительными характеристиками моделирования также являются:

применение более совершенной технологии расчета в сравнении и иными методами;

высокая степень обоснованности решений;

сокращение сроков разработки решений;

возможность выполнения обратной операции. Ее особенность состоит в том, что имея модель и исходные данные, можно рассчитать результат. Но можно сориентироваться на требуемый результат и определить, какие исходные данные для этого необходимы. В управленческой деятельности эта возможность чрезвычайно важна. Так, например, ориентируясь на получение прибыли в объеме N, можно установить и количественные значения других показателей, прямо и косвенно влияющих на достижение планируемого результата (получение новых зна­ний о ситуации (объекте), отсутствующих ранее; формулировку выводов, которые невозможно получить при самых содержательных логических рассуждениях).

Для углубления представлений о многообразии подходов к характеристике процесса математического моделирования при-ведем еще один [16]. В частности, в содержание математического моделирования включаются такие этапы, как: 1) постановка задачи, 2) разработка формализованной схемы, 3) формализация задачи в общем виде, 4) численное представление модели.

При постановке задачи выявляются закономерности процесса в теоретическом и практическом планах, его структура, условия и факторы формирования.

Формализованная схема разрабатывается на основе вышеуказанных данных. Она менее строго, чем математическая модель, описывает моделируемый процесс (явление). В схеме называются конкретные показатели, относящиеся к характеристике объекта управления. Это могут быть искомые величины, параметры процесса, факторы и условия, которые непременно учитываются при выполнении расчетов. Существующие зависимости между показателями отображаются математическими символами, как функции без указания точной формы связи. Она может иметь вид:

< So, Т, RS, Z, О, A, f, К, А opt >;,

где So - проблемная ситуация;

Т - время для принятия решения;

R - ресурсы, необходимые для принятия решения;

S - множество альтернативных ситуаций, доопределяющих проблемную ситуацию: S=(S1,S2,S3,...,Sn);

Z - множество целей, преследуемых при принятии решений:

Z=(Z1,Z2,Z3,...,Zj);

О - множество ограничений: О = (O1,O2,O3,...Oj);

f - функция предпочтения лица, принимающего решения (ЛПР);

А - множество альтернативных вариантов решений:

А=(А123,...,Аm);

К - критерий выбора наилучшего решения;

Аур, - наилучшее оптимальное решение. [16]

В общем виде задача представляется на основе формализованной схемы. Однако существующие зависимости конкретизируются. Далее составляющие модель элементы приобретают количественное выражение, модель проверяется и в случае необходимости уточняется. На базе использования вычислительной техники просчитывается эффективность имеющихся вариантов по заданному критерию оценки, и на этой основе определяется оптимальный вариант решения задачи.

При построении математической модели выполняются такие виды работ, как:

- составление перечня всех элементов системы, влияющих на эффективность ее функционирования. Если в качестве меры эффективности принимаются издержки обращения, то составляется весь их перечень по элементам: зарплата основная и дополнительная, транспортные расходы, проценты за кредит, расходы по рекламе и т.д.;

- рассмотрение степени влияния каждого из элементов перечня на функционирование организации при различных вариантах решений;

- элементы, не влияющие на выбор вариантов решений или влияющие незначительно, исключаются из перечня и не учитываются при построении модели;

- чтобы упростить модель следует предварительно, по возможности, сгруппировать некоторые взаимосвязанные элементы (например, расходы по аренде, содержанию помещений и др. объединить в условно-постоянные расходы);

- после уточнения перечня элементов определяется их постоянный или переменный характер влияния на систему. В составе переменных элементов устанавливаются, в свою очередь, подэлементы системы, влияющие на их величину. Например, транспортные расходы зависят от объема перемещенных товаров, расстояния, стоимости горючего и др.;

- за каждым подэлементом закрепляется определенный символ и далее составляется уравнение или система уравнений.

Операционные модели решений имеют вид уравнения или системы уравнений. Они могут быть сложными, с математической точки зрения, но структура их достаточно проста. Например, часто используемые операционные модели имеют вид:

E=f(Xj,Yj),

где Е - означает меру общей эффективности;

f - функция, задающая соотношение между Е, Xj, Yj;

Xj - управляемые переменные, определяющие поведение системы;

Yj - неуправляемые переменные, определяющие поведение системы.

Управляемыми переменными (Xj), как уже отмечалось, являются факторы, на которые может оказывать влияние руководитель предприятия. К ним относятся: численность работников, количество оборудования, используемые технологии производства продукции и др. Некоторые управляемые переменные могут иметь ограничения, и это следует учитывать в ходе построения модели. После установления перечня переменных факторов определяется значимость каждого из них.

Неуправляемыми переменными (Yj) считаются факторы, на влияние которых руководитель не может воздействовать. Это действия потребителей, поставщиков, установки государственных органов и др.

Оптимальное решение по данной модели определяется путем поиска значений управляемых факторов (Xj), при которых мера общей эффективности (Е) будет максимальной (либо минимальной, если в качестве меры эффективности принят показатель затрат на производство, потери).







Дата добавления: 2015-08-17; просмотров: 778. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия